Mission Status

Jun 17, 2019

OSIRIS-REx has successfully completed its Detailed Survey phase and transitioned into a new record-setting orbit around Bennu!

Last week the OSIRIS-REx navigation team performed three maneuvers using the spacecraft’s attitude control thrusters to place the spacecraft into orbit around Bennu for the second time. The first two maneuvers, on June 8 and 10, were staging burns that moved the spacecraft into position for the third burn on June 12, which ultimately placed OSIRIS-REx into orbit. These maneuvers imparted a velocity change (delta-v) of 8, 6, and 7 cm/sec, respectively. Throughout the Orbital B phase, slow changes in the spacecraft’s orbit will require correction maneuvers approximately every three weeks. The spacecraft’s circular orbit period around Bennu is 22 hours, with a velocity of 7 centimeters per second, which allows for the mission’s science measurements to be observed from a uniform altitude.

June 12 marked the beginning of the mission’s Orbital B phase, and the spacecraft began its new orbit approximately 680 meters above Bennu’s surface. This orbit breaks the record that OSIRIS-REx set during its Orbital A phase for the closest a spacecraft has ever orbited a small planetary body, which was as close as 1.3 km above the asteroid’s surface. The first two weeks of Orbital B will focus on investigating the causes of Bennu’s particle ejection events by taking frequent images of the asteroid’s horizon. The remaining five weeks of Orbital B will focus on mapping the asteroid from a close range.

With the conclusion of the Detailed Survey: Equatorial Stations phase on June 7, the team completed the mission’s main global survey effort. Here are the highlights from both Detailed Survey: Baseball Diamond and Detailed Survey: Equatorial Stations phases (Feb 22 – Jun 7):

  • 14 Flyovers
  • 18 Observation Stations
  • 2,616 NavCam Images
  • 19,660 OCAMS Images
  • 2,286 OTES Data Acquisitions
  • 179 OVIRS Science Acquisitions
  • 19 OLA Scans
  • 333,591 Total Spacecraft and Payload Commands



Jun 10, 2019

The OSIRIS-REx spacecraft successfully completed its last week of the Detailed Survey: Equatorial Stations mission phase. This week the team flew the spacecraft at the 6:00 p.m. Local Solar Time station. Station 7 observations included MapCam, OLA, OTES, and OVIRS, which performed continuous linear scans for a full rotation of Bennu. Following these initial observations, the spacecraft performed zig-zag scans using OTES and OVIRS in order to collect data in support of the thermal emission phase function. All of the data collected this week will further inform the team’s decisions for down-selecting sample collection sites in preparation for the Reconnaissance phase of the mission. The team is now preparing for the spacecraft to enter Orbital B.

June 4, 2019, marked 1,000 days since launch, which means OSIRIS-REx has been in flight for over 1,000 days. The OSIRIS-REx spacecraft has traveled about 2.5 billion km since launch, and has been operating in close proximity to Bennu since late 2018. As of now, one-way light time is 8.34 minutes.




Jun 03, 2019

Several key events took place on the ground and in space this week for OSIRIS-REx.

On the ground, the mission’s Site Selection Board (SSB) met at the University of Arizona on May 30 to review candidate sample collection sites and to down-select contending sites from ~50 locations. As designed, the down-select process was based on whether each Region of Interest (ROI) met specific safety criteria. The down-select resulted in 23 candidate sites remaining viable, with several others potentially remaining viable under stricter system performance limits. The next step will be to utilize data from the Detailed Survey phase to assess the sampleability (likelihood that an ingestible sample of regolith will be collected) of each viable region, leading to the next round of site down-selection.

Team members also participated in a Technical Interchange Meeting (TIM) on May 29 to work through open items for the mission’s upcoming Reconnaissance phase, scheduled to begin in Fall 2019. Reconnaissance is the critical mission phase that will confirm that candidate sites are both safe and contain sampleable material, as well as provide the closeup imaging required to produce the features and landmarks required for autonomous navigation to the asteroid surface.

Up in space, the team successfully flew the spacecraft at the 6:00 a.m. Local Solar Time station for Detailed Survey: Equatorial Stations phase on May 30. For the Station 5 observations, MapCam, OTES and OVIRS collected data in continuous linear scans for a full rotation of Bennu. After these initial observations, the spacecraft performed two east-west zig-zag scans with OTES and OVIRS. In tandem, these observations help create a more complete global safety map, as well as a global science value map and global sampleability map. Data gathered at this station may also help determine which candidate sample sites have sufficient deliverability.

Next week marks the last week of the Detailed Survey mission phase, and OSIRIS-REx will enter its final station before beginning Orbital B.




May 27, 2019

This last week was Week 5 of Detailed Survey: Equatorial Stations phase. For each week of this phase, the spacecraft observes Bennu from a different Local Solar Time (LST) station. At each station, the spacecraft is centered on the equator at a distance of 5 km and observes the asteroid for one full Bennu rotation (4.3 hours).

On May 23, the spacecraft took observations from Station 5, located at 6:00 am LST. OVIRS, OTES and MapCam took observations and OLA scanned cross-track in ride-along mode. These observations contribute to the OVIRS and OCAMS photometric models, global spectral, temperature and thermal inertia maps, and the global shape models from SPC (35-cm) and OLA (75 cm).

As a preliminary step to the selection of the mission’s sample collection site, the team has been closely studying data obtained from 50 regions of interest on the asteroid. They are looking for sites that are safe for the spacecraft, sampleable and scientifically interesting. Starting next week, the team will begin narrowing down the number of possible sites, which will then be further characterized before a final and back-up site are chosen in July.

On May 22, the TAGCAMS navigation cameras went into brief safe-mode after missing an aliveness check. The instrument resumed operations later that day, which was confirmed during the scheduled High Gain Antenna (HGA) transmission.




May 20, 2019

This last week was Week 4 of Detailed Survey: Equatorial Stations phase. For each week of this phase, the spacecraft will observe Bennu from a different Local Solar Time (LST) station. At each station, the spacecraft will be centered on the equator at a distance of 5 km and will observe the asteroid for one full Bennu rotation (4.3 hours).

On May 16, the spacecraft took observations from Station 4, located at 10:00 am LST. The 10:00 am station is the prime station for OVIRS observations. The team is operating OVIRS in a special high-resolution mode to get the best possible information about the mineralogy and organic composition of the surface for sample site selection. MapCam and OTES also took observations with OLA scanning in ride-along mode. These observations contribute to the OVIRS and OCAMS photometric models, global spectral, temperature and thermal inertia maps, and the global shape models from SPC (35-cm) and OLA (75 cm).

Immediately following Station 4, OTES observed Bennu in a series of east-west zig-zag scans to provide data for the thermal emission phase function. OVIRS took ride along scans and MapCam took context images.




May 13, 2019

This last week was Week 3 of Detailed Survey: Equatorial Stations phase. For each week of this phase, the spacecraft will observe Bennu from a different Local Solar Time (LST) station. At each station, the spacecraft will be centered on the equator at a distance of 5 km and will observe the asteroid for one full Bennu rotation (4.3 hours).

On May 9, the spacecraft took observations from Station 3, located at 12:30 pm LST, with OVIRS, OTES, MapCam, and OLA. These observations contribute to the OVIRS and OCAMS photometric models, global spectral, temperature and thermal inertia maps, and the global shape models from SPC (35-cm) and OLA (75 cm).

On May 11, OTES observed Bennu in a series of east-west zig-zag scans to provide data for the thermal emission phase function. OVIRS took ride along scans and MapCam took context images.




May 06, 2019

This last week was Week 2 of Detailed Survey: Equatorial Stations phase. For each week of this phase the spacecraft will observe Bennu from a different Local Solar Time (LST) station. At each station, the spacecraft will be centered on the equator at a distance of 5 km and will observe the asteroid for one full Bennu rotation (4.3 hours).

On May 2, the spacecraft took observations from Station 2, located at 3:20 am LST, with MapCam, OVIRS and OTES. These observations contribute to the OVIRS and OCAMS photometric models, global temperature and thermal inertia maps, and the global 35-cm SPC shape model. This position – with Bennu backlit by the sun – also provides the team with the opportunity to perform another dust plume search of the area around the asteroid.




Apr 29, 2019

This last week was the first week of Detailed Survey: Equatorial Stations phase. Each week during this phase, the spacecraft will observe Bennu from a different Local Solar Time (LST) station. At each station, the spacecraft will be centered on the equator at a distance of 5 km and will observe the asteroid for one full Bennu rotation (4.3 hours). On April 25, the spacecraft took observations from Station 1, located at 3:00 pm LST, with MapCam, OVIRS, OTES and OLA.

Continued analysis of NavCam 1 images detected that another particle ejection event occurred on April 19. The study of the events and their causes is ongoing.




Apr 22, 2019

Last week was the conclusion of the mission’s Detailed Survey: Baseball Diamond phase. Each week during this phase the spacecraft executed a flyby of Bennu at a different observing angle.

On April 18 and 19, the spacecraft performed Flyby 7, during which it observed Bennu with MapCam, OLA and OTES at the 12:30 pm local solar time position. The pass was divided into two phases – A and B. Flyby 7A occurred over Bennu’s northern hemisphere at 40°latitude from a distance of 3.8 km. Flyby 7B occurred over Bennu’s southern hemisphere at -40°latitude, also from a distance of 3.8 km. During both phases, the spacecraft slewed east, west and straight down to image every 24°of Bennu’s rotation.

Next week, the mission moves into Detailed Survey: Equatorial Stations phase.

On Earth, a contingent from the OSIRIS-REx team, including the PI, traveled to Japan last week for a technical interchange meeting with JAXA’s Hayabusa2 team. The topics discussed included the first Hayabusa2 sample collection event and OSIRIS-REx sample site selection.




Apr 15, 2019

The mission’s Detailed Survey: Baseball Diamond phase operations continue. Each week during this phase the spacecraft executes a flyby of Bennu at a different observing angle.

On April 11 and 12, the spacecraft performed Flyby 6, which mirrored Flyby 5’s operations but with the hemispheres reversed. For Flyby 5, the spacecraft flew north-to-south, and then reversed directions (an unusual operation in spaceflight, given the microgravity environment around Bennu)  for a south-to-north pass for Flyby 6.

During Flyby 6, the spacecraft observed Bennu with PolyCam, OLA and OTES at the 12:30 pm local solar time position. The pass was divided into two phases – A and B. Flyby 6A occurred over Bennu’s southern hemisphere at a distance of 5 km, and the spacecraft slewed east, west and straight down to image every 12° of Bennu’s rotation. Flyby 6B occurred over Bennu’s northern hemisphere at a distance of 3.06 km, and the spacecraft slewed east to image every 6° of Bennu’s rotation. These observations support the development of the 35-cm Stereo Photoclinometry (SPC) and 75-cm OLA shape models, the production of global image mosaics and the identification and cataloging of features for Natural Feature Tracking (NFT).

 




Apr 08, 2019

The spacecraft continues Detailed Survey: Baseball Diamond phase operation. Each week during this phase the spacecraft executes a flyby of Bennu at a different observing angle.

On April 4 and 5, the spacecraft performed Flyby 5, during which it observed Bennu with PolyCam, OLA and OTES at the 12:30 pm local solar time position. The pass was divided into two phases – A and B. Flyby 5A occurred over Bennu’s northern hemisphere at a distance of 5 km, and the spacecraft slewed east, west and straight down to image every 12° of Bennu’s rotation. Flyby 5B occurred over Bennu’s southern hemisphere at a distance of 3.06 km, and the spacecraft slewed west to image every 6° of Bennu’s rotation. These observations support the development of the 35-cm Stereo Photoclinometry (SPC) and 75-cm OLA shape models, the production of global image mosaics and the identification and cataloging of features for Natural Feature Tracking (NFT).

 




Apr 01, 2019

The spacecraft continues with operations for the mission’s Detailed Survey: Baseball Diamond phase. Each week during this phase the spacecraft executes a flyby of Bennu at a different observing angle. On March 28 and 29, the spacecraft performed Flyby 4, during which it observed Bennu with PolyCam, OLA and OTES at the 10 am local solar time position, from a distance of 3.7 km.

Due to severe winter weather conditions throughout Colorado on March 13, the facility where mission operations are conducted was closed for safety. Due to this emergency closure, a planned update to the spacecraft pointing could not be processed and uplinked. Consequently, the mission missed MapCam observations above approximately 20º north latitude on Bennu during Flyby 2. The team will evaluate whether there is a need to plan for additional observations in the future in order to meet science requirements. This decision will be made after assessing Flyby 7, which is scheduled for execution on April 18 and includes MapCam observations above Bennu’s 20ºN.




Mar 22, 2019

OSIRIS-REx continues operations in the mission’s Detailed Survey: Baseball Diamond phase, which comprises a total of seven pole-to-pole flybys of Bennu. On Mar. 16 the spacecraft successfully executed the M5D maneuver to position itself at the starting point of the third observation leg, and on Mar. 19, it executed the M6D maneuver to begin the third flyby. During this leg, the spacecraft observed Bennu from the 10:00 am local solar time position from a distance of 3.7 km. Both the PolyCam camera and the OTES spectrometer took observations during the pass.




Mar 11, 2019

The spacecraft is now operating successfully in the Detailed Survey: Baseball Diamond Phase. Each week during this phase the spacecraft will execute a flyby of Bennu at a different observing angle in order to fully map the asteroid. On March 5, the spacecraft executed the M2D maneuver to commence the first observation leg, a flyby at a local solar time of 12:30 pm and a closest approach distance of 5 km. Both the PolyCam camera and the OTES spectrometer were both on and took observations during this pass of Bennu.




Mar 04, 2019

On Feb. 28, shortly after completing its 23rd orbit of Bennu, the spacecraft executed a departure maneuver (M0D) to exit orbit and fly to a point 7 km from Bennu. Later this week, the spacecraft will begin the series of 3 – 5 km flybys of Bennu that comprise the Detailed Survey mission phase.

This last week the following science instruments took observations of Bennu: OCAMS, OLA, OTES, and REXIS.




Feb 25, 2019

OSIRIS-REx continues to orbit Bennu at an altitude ranging from 1.6 to 2.1 km, with an orbital period of ~62 hours. This last week, both the OLA altimeter and the MapCam camera made observations of Bennu from orbit.

On Feb. 21, the mission team gathered to watch JAXA’s Hayabusa-2 spacecraft execute its first sample collection activity at asteroid Ryugu. The OSIRIS-REx and Hayabusa-2 teams are working closely together on the two asteroid sample return missions, and the OSIRIS-REx team cheered the Japanese announcement that their attempt appeared to be a success.




Feb 18, 2019

This last week, the spacecraft continued orbiting Bennu as part of the mission’s Orbital A phase. The OLA instrument executed a linear scan over the majority of Bennu’s northern hemisphere on Feb. 13. OLA took a single 5 ½ hr scan and received 1.82 million measurements of Bennu.

The mission team is currently in the midst of the biannual checkouts and calibrations of the spacecraft’s systems. So far, TAGCAMS, GNC LIDAR-1 and-2 and REXIS have all been successfully exercised. The checkouts also provided REXIS with the first opportunity to observe Bennu. REXIS science operations are scheduled to begin this summer.




Feb 11, 2019

Several times since NASA’s OSIRIS-REx spacecraft entered orbit around its target asteroid Bennu on Dec. 31, 2018, the OSIRIS-REx team detected multiple, bright, point sources near Bennu in the optical navigation (OpNav) images obtained by the spacecraft’s NavCam 1 imager. The science team is currently investigating the exact cause of this phenomenon, but it is probable that these images record a number of small particles near the asteroid.

The mission team’s initial analysis determined that the particles do not pose a significant risk to the spacecraft in its current orbit, which is between 1 and 1.3 miles (1.6 and 2.1 km) from Bennu. The team will continue to study the particles and their sources. After the initial detection, the team increased the cadence of OpNav observations to better study the environment around Bennu and monitor for additional occurrences.

OSIRIS-REx is scheduled to leave its current orbit on Feb. 28, when it will begin the mission’s Sample Site Selection campaign. During this next mission phase, the OSIRIS-REx spacecraft will make a series of flybys of Bennu at a distance of around 2 miles (3 km) to start mapping the asteroid in detail.




Feb 04, 2019

The spacecraft continues to orbit Bennu at an altitude ranging from 1.6 to 2.1 km. As of today, the spacecraft has been orbiting the asteroid for 32 days and is in the midst of completing its 12th orbit. It is notable that the team has been able to waive all of the weekly opportunities to trim the orbit since insertion on Dec. 31. The fact that the orbit has not needed adjustment is reflective of the flight dynamics high fidelity modeling and the excellent maneuver performance of the spacecraft.

On the ground, mission leadership has given the go-ahead to proceed to the next mission phase as scheduled. Detailed Survey: Baseball Diamond phase will commence with a small spacecraft maneuver on Feb. 28. This transition marks the end of the Navigation Campaign and the beginning of the Site Selection Campaign. The primary objective of the SSC is to globally map Bennu to identify two potential sample sites for detailed characterization.




Jan 28, 2019

The spacecraft continues in orbit around Bennu and has completed 10 orbits so far. The spacecraft takes approximately 62 hours to complete one orbit at a speed of 5 cm/sec.

On the ground, the mission team continues to map and analyze Bennu with the primary goal of selecting a site for the Touch-and-Go (TAG) sample collection event (currently scheduled for 2020). This last week, the mission held a full-project TAG Technical Interchange Meeting (TIM) to discuss the current TAG design, possible design changes due to data gathered from Bennu since Arrival, and future refinements to the TAG plan.




Jan 21, 2019

This past week, the spacecraft continued orbiting Bennu as part of the Orbital A navigation campaign, traveling around 5 cm/sec (relative to the asteroid). This phase was designed to provide the mission team with experience navigating in close proximity to a small body, and as such, there are no science requirements. The only Bennu observations being taken during Orbital A phase are optical navigation (OpNav) images using the NavCam1 camera. Orbital A continues through mid-February.

This week, the navigation team was able to officially cancel trim burn maneuvers through Feb. 9 due to the sustained performance of the spacecraft’s trajectory implemented during the Dec. 31 orbital insertion.




Jan 14, 2019

The OSIRIS-REx spacecraft continues to orbit Bennu at an altitude ranging from 1.6 to 2.1 km, with an orbital period of 61 hours. The spacecraft has completed 5.5 orbits of Bennu to date. The one-way communication time from the spacecraft back to Earth is around 5.5 minutes.

On the ground, the mission held its 14th Science Team Meeting at the University of Arizona last week. This was the first science team meeting since the spacecraft’s arrival at the asteroid, which means it was also the first gathering where the entire science team was able to work with detailed Bennu data from the spacecraft.




Jan 07, 2019

On Dec. 29 and 31, the OSIRIS-REx spacecraft successfully completed the two maneuvers required to enter orbit about Bennu. The accurate performance of these orbit insertion maneuvers, as well as the continued accurate navigation performance since orbit insertion, allowed for the wave-off of several planned updates to the spacecraft’s orbit determination (OD). The mission’s navigation team will continue to study OD performance over the first few weeks of spacecraft orbits to further refine and predict orbital operations – which will eventually allow the team to reduce the trim burn schedule.

The first orbit of Bennu, which started on Dec. 31, ended 61.4 hours later on Jan. 3. The spacecraft will continue orbiting the asteroid through mid-February.




Dec 31, 2018

Today at 2:43 p.m. EST, the spacecraft carried out a single, eight-second burn of its thrusters and entered into orbit around Bennu, making Bennu the smallest object ever to be orbited by a spacecraft.




Dec 17, 2018

This month, the spacecraft has been progressing through the maneuvers of the mission’s Preliminary Survey phase. Starting on Dec 3, the spacecraft executed seven maneuvers (M1P – M7P) to make three passes over Bennu’s north pole and one each over its equator and south pole. Each flyby brought OSIRIS-REx within seven km from Bennu’s surface.

The M2P and M3P burns, executed on Dec. 5 and 7 respectively, for the first time completely reversed the direction of the spacecraft’s motion in order to initiate further flybys of Bennu’s north pole. These maneuvers highlight the unique character of the complex trajectories required for this mission’s asteroid proximity operations, which can be described as the spacecraft “formation flying” with Bennu.

During these Bennu passes, the spacecraft’s MapCam camera, OTES and OVIRS spectrometers, and OLA laser altimeter have been taking close observations of Bennu’s surface. This is the first time that the spacecraft has been close enough to employ OLA, which takes ranging measurements of the asteroid. These observations will be used to make 3D topographic maps of the asteroid.




Dec 03, 2018

On Dec. 3, the spacecraft completed its 2 billion km outbound journey and arrived at the asteroid Bennu. At a distance of 19 km from Bennu, the spacecraft executed a maneuver (M1P) to turn and fly over the asteroid’s north pole, beginning the mission’s Preliminary Survey phase and asteroid proximity operations.




Nov 19, 2018

This week, the team put the spacecraft’s sample acquisition arm through its paces for the first time in flight. More here.




Nov 12, 2018

On Nov. 5, the spacecraft successfully executed a trim maneuver (AAM-3a) to re-target conditions for the AAM-4 maneuver scheduled for Nov. 12. It also realigned the spacecraft’s trajectory with the precise approach corridor needed for the PolyCam shape model imaging planned over the next several weeks. The 6 cm/s maneuver was only the second burn utilizing the spacecraft’s Attitude Control System (ACS) thrusters, which are capable of velocity changes as small as 1 cm/s.

On Nov. 7, the Mission Planning Board evaluated the mission’s readiness to proceed from Approach Phase into Preliminary Survey Phase and determined that OSIRIS-REx is a GO. Barring any anomalies on the flight system or any unforeseen Bennu surprises, the spacecraft will “arrive” at Bennu on Dec. 3 and begin Preliminary Survey’s hyperbolic flyovers of the poles and equator.

The science payload also executed the following observations in the past week: OCAMS MapCam Daily Phase Function, OTES Full Disk Integrated Spectroscopy, OVIRS Full Disk Integrated Spectroscopy, OVIRS Solar Calibration, OCAMS PolyCam Natural Satellite Search, OCAMS MapCam Natural Satellite Search, and TAGCAMS Natural Satellite Search ride-along with OpNavs.




Nov 05, 2018

OSIRIS-REx has had another busy period of science and spacecraft operations. From Oct. 25 to Nov. 5, the OCAMS cameras made observations for the Daily Phase Function science campaign. The images from this campaign provide data to measure changes in light reflected from Bennu’s surface as the Sun illuminates the asteroid from different angles. These observations will provide information on Bennu’s albedo and the way light is reflected from the asteroid’s surface.

On Oct. 25, the five Frangibolts keeping the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) arm against the spacecraft structure were successfully released. On Oct. 26, the Motor Articulation Control Module (MACM-2) card was powered on for the first time in flight. The three motors were effectively commanded to move the TAGSAM arm out of the launch container and into the parked position.

The Natural Satellite Search campaign also continued during this time using both the PolyCam and MapCam cameras of the OCAMS instrument, as well as the TAGCAMS navigation cameras as ride-alongs.

On Oct. 29, the spacecraft executed its third Asteroid Approach Maneuver (AAM-3), slowing the spacecraft by approximately 5.13 m/sec. This was also the mission’s first two-part burn maneuver, which accommodated constraints for the science instruments to not be pointed too closely to the Sun.

On Oct. 29, PolyCam also obtained images of Bennu to provide a “super-resolution” view of the asteroid that exceeded the best ground-based data collected.




Oct 29, 2018

This week, the OSIRIS-REx spacecraft executed its third Asteroid Approach Maneuver, slowing the spacecraft’s speed down to .24 mph (.11 m/sec).




Oct 22, 2018

This last week was very busy for the mission. On Oct. 15, the spacecraft successfully executed its second Asteroid Approach Maneuver (AAM-2), which slowed its rate of approach toward Bennu by approximately 305 mph (137 m/s) and burned around 186 lbs. (84.4 kg) of fuel. There are two more AAMs scheduled over the next month to further slow and more precisely target the spacecraft’s trajectory toward Bennu. The final two maneuvers are much smaller than AAMs 1 and 2, and will use the spacecraft’s Trajectory Correction Maneuver (TCM) engines instead of its Main Engines.

On Oct. 17, the OSIRIS-REx team jettisoned the cover that protected the TAGSAM head during launch and early flight. The team used several methods to confirm that the cover ejection was successful. Directly before the deployment, the spacecraft executed its third sample mass measurement (SMM-3) spin to measure the spacecraft’s mass properties while the cover was still attached. The day after the deployment, the spacecraft executed SMM-4, which confirmed that the spacecraft’s mass had decreased by around 2.67 lbs. (1.21 kg) from the previous day. The team was also able to confirm the cover ejection through telemetry indicating changes in thermal signatures and forces on the spacecraft.

On the mission’s science side, the spacecraft also continued with its Bennu Phase Function Observation campaign this week. Bennu now appears larger than a pixel in the PolyCam imager’s field of view, and the team is looking forward to the next few weeks as the asteroid’s shape is finally revealed.




Oct 15, 2018

This week, the OSIRIS-REx spacecraft executed its second Asteroid Approach Maneuver, as it continues slowing down while approaching Bennu.




Oct 08, 2018

New tracking data confirm that the spacecraft completed its first Asteroid Approach Maneuver (AAM-1) on Oct. 1, starting the final approach to Bennu. The main engine burn slowed the spacecraft speed by 785.831 miles per hour (351.298 meters per second) and consumed 532.4 pounds (241.5 kilograms) of fuel.

From the beginning of the mission’s science operations on Aug. 17 through AAM-1, PolyCam obtained optical navigation images (OpNavs) of Bennu on a Monday, Wednesday and Friday cadence. After AAM-1, PolyCam is taking daily OpNavs as the spacecraft continues to close in on the asteroid.

This last week the spacecraft’s MapCam camera also began taking daily Phase Function images. These images support the mission’s science requirement to measure changes in light reflected from Bennu’s surface as the Sun illuminates the asteroid across a range of angles. These observations provide information on Bennu’s albedo and the way light reflects under various observing conditions.




Oct 01, 2018

This week, the OSIRIS-REx spacecraft executed its first Asteroid Approach Maneuver to put it on course for its scheduled Bennu arrival in December.




Sep 24, 2018

As of today, OSIRIS-REx is approximately 480,000 km from Bennu and is 6 days from executing Asteroid Approach Maneuver 1 (AAM-1) on Oct. 1. AAM-1 is the first of four major maneuvers that will slow the spacecraft’s velocity on its final approach to Bennu. The spacecraft is currently flying at approximately 490 m/s (~1,100 mph), and AAM-1 will slow the spacecraft’s rate of approach to Bennu by 350 m/s (~780 mph) to 140 m/s (~310 mph).

This last week, the mission’s navigation team delivered the preliminary designs for AAM-1, and the final design will be completed and radiated to the spacecraft in the upcoming week.




Sep 17, 2018

On Sept. 14, the spacecraft’s REXIS instrument opened its Radiation Cover and REXIS now has a clear view of space for the first time. The Radiation Cover protected the detectors from radiation damage during the cruise to Bennu, but it also blocked the aperture of the instrument. With OSIRIS-REx nearing Bennu, the mission team opened the cover to enable REXIS to observe external calibration targets like the Crab Nebula, as well as ultimately the asteroid.

The Radiation Cover had been held shut by a Frangibolt since before launch. On Friday, the Frangibolt was actuated by heating it up, which expanded a shape-memory alloy cylinder, breaking the titanium bolt holding the cover shut. By inspecting heater and temperature telemetry and comparing the difference between spectra taken before and after the Frangibolt firing, the REXIS team was able to determine that the cover opened successfully and the instrument is now seeing the cosmic X-ray background. Going forward, REXIS will take measurements on several astrophysical X-ray sources in preparation for observations of Bennu starting next summer.




Sep 10, 2018

This last week the OSIRIS-REx spacecraft continued its approach toward Bennu. Now that we have visually acquired the asteroid, the PolyCam camera images Bennu three times a week to provide data to the navigation team. At a distance of 1.1 million km, Bennu appears as just a dot. However, the navigation team can still use these images to calculate the spacecraft trajectory and refine Bennu’s orbit.




Sep 04, 2018

This last week the mission’s Science Operations Planning Group held the tactical kickoff for the upcoming Natural Satellite Search. The mission operates on an 8-week science planning schedule, so between now and the search’s commencement on Oct. 23, the finalized commands for the activity will be built, tested, and radiated to the spacecraft. Beyond the inherent science value of the possible discovery of natural satellites at Bennu, the search is key to assess the spacecraft’s safety while it operates in the area around the asteroid.




Aug 27, 2018

This last week the team processed and released its first set of images of the mission’s target asteroid Bennu. The spacecraft’s PolyCam camera took the images from a distance of approximately 2.2 million km. Now that OSIRIS-REx has come into instrument range of Bennu, the spacecraft’s science payload will make regular observations of Bennu and its surroundings as it continues to approach the asteroid.




Aug 20, 2018

Last week marked the beginning of OSIRIS-REx’s Approach Phase, which is the first phase of mission asteroid operations. Visit the Asteroid Operations page to discover how the spacecraft and the mission team will be exploring Bennu over the next few years.




Aug 13, 2018

This last week, the mission team ran a checkout of the spacecraft’s two GNC (Guidance, Navigation and Control) LIDAR systems. These sensors are designed to provide navigational information while the spacecraft is operating in close proximity to the asteroid, in particular during the TAG sampling maneuver. The LIDAR system calculates the distance to Bennu by bouncing laser pulses off Bennu’s surface and measuring the time it takes for the light to return to the detector. Because there were no targets in the vicinity to bounce the laser off during the test, this LIDAR checkout solely focused on system outputs. Preliminary results indicate that the checkouts executed as expected.

The mission team also spent this last week preparing for the kick-off of asteroid operations, which is scheduled to occur on Aug. 17 when the spacecraft’s OCAMS camera takes its first image of Bennu.




Aug 06, 2018

On July 30-31, the spacecraft conducted another Sample Mass Measurement (SMM) calibration activity. After sample collection, the mission team will use the SMM pirouette to measure the mass of the collected regolith in the TAGSAM head. The team is awaiting the downlink of the complete data set from the spacecraft to be able to analyze the performance of the spin maneuvers, but preliminary data indicates that they executed as expected.

 




Jul 30, 2018

This last week, the mission team assessed that the second week of the Launch+22 months instrument checkouts and calibrations proceeded as expected. This was the last set of checkouts and calibrations the spacecraft will execute before the beginning of Approach Phase on August 17 and the resulting Bennu imaging campaign.

Since launch on September 8, 2016, the OSIRIS-Rex spacecraft has travelled 1.73 billion km, and it has around 302 million km to travel before its scheduled arrival at Bennu on December 3.




Jul 23, 2018

Last week, the Launch+22 months instrument checkouts and calibrations progressed through their second week of observations. The mission team also assessed that the instruments exercised during the campaign’s first week, OCAMS, OVIRS and REXIS, operated as expected.

Also last week, the spacecraft passed the 4 million km range-to-Bennu mark, and is now 3.8 million km from the asteroid.




Jul 16, 2018

This week the team began a two-week campaign of instrument checkouts and calibrations. The mission exercises the spacecraft’s payloads approximately every six months during flight to ensure that all instruments are working as expected. This also provides an opportunity to collect additional calibration data on each instrument, which is used to further refine the science data ground processing. These checkouts are the final checkouts before the Approach phase begins mid-August.




Jul 09, 2018

Further reconstruction analysis this week by the mission teamconfirmed that the spacecraft’s deep space maneuver on June 28 was successful and closely followed the team’s design and predicts. Also on Earth, the Science Operations Planning Group (SOPG) is in the midst of planning operations for the first three weeks of Approach Phase, which will start on August 17.




Jul 02, 2018

On June 28, the spacecraft executed the second deep space maneuver of its outbound cruise. Preliminary analysis indicates that the spacecraft performed the maneuver as planned, and the team is conducting more detailed analysis to determine the maneuver’s exact results.




Jun 25, 2018

On June 19, the Science Operations and Planning Group (SOPG) held the tactical kickoff for the first week of Approach Phase, which commences August 17. This means that the day-to-day operational planning of the mission’s Bennu science operations has begun.

This week the OSIRIS-REx mission team has also been enthusiastically watching our JAXA partner mission, Hayabusa2, return its first images of the asteroid Ryugu. In these images, Ryugu has shown itself to be shaped remarkably similarly to what Bennu is expected to look like. OSIRIS-REx and Hayabusa2 are working collaboratively on their respective asteroid sample return missions to reduce risk and increase the science knowledge obtained.




Jun 18, 2018

The mission team this week continued preparations for the spacecraft’s arrival at Bennu by holding series of technical interchange meetings (TIMs) focusing on asteroid proximity operations.  The team also held an initial walkthrough of the Touch-and-Go (TAG) sampling sequence.

The spacecraft is now less than 7 million kilometers from Bennu and has 388 million km left to travel as it chases down the asteroid for its scheduled arrival this December.




Jun 11, 2018

This past week, OSIRIS-REx continued nominal operations en route to asteroid Bennu. The spacecraft has been in space for 640 days and is currently 56.4 million km from Earth.

On the ground, several members of the OSIRIS-REx team were recognized with 2018 NASA Agency Honor Awards:

  • Peter Antreasian – Exceptional Public Service Medal
  • Coralie Jackman and Devin Poland – Early Career Public Achievement Medal
  • Dennis Reuter – Distinguished Service Medal
  • OSIRIS-REx Earth Gravity Assist (EGA) Team – Group Achievement Award
  • OCAMS Instrument Team/Bashar Rizk – Silver Achievement Medal



Archive