1. OSIRIS-REx ‘MOM’ (That’s ‘Mission Operations Manager’ in NASA-speak) Says Goodbye to an Asteroid

    April 26, 2021 -

    Nayi Castro began working with NASA Goddard’s OSIRIS-REx mission in 2018 as the spacecraft approached Asteroid Bennu. She started on the mission as deputy Mission Operations Manager (MOM). Today she serves in the role of lead MOM. As OSIRIS-REx gets ready to leave Bennu, Castro shares her thoughts on her work with OSIRIS-REx and her career with NASA, as well as her personal interests.

    Nayi Castro, mission operations manager for NASA’s OSIRIS-REx, the agency’s first asteroid sample return mission. Credit: NASA

    What are the responsibilities of a MOM?

    Nayi: I manage all of the activities associated with sending commands to, and receiving data back from, the spacecraft. This includes the communication and transfer of products amongst team members, based in Maryland, Arizona, Colorado, and California, something that became particularly challenging during COVID-19.

    How are you feeling about OSIRIS-REx leaving Bennu?

    Nayi: It’s bittersweet to say goodbye to the asteroid that was our spacecraft’s home since OSIRIS-REx’s arrival in 2018. There was a lot of innovative science and engineering tailored to the design and operation of OSIRIS-REx, by an incredible team. As the team starts to focus on return cruise and Earth reentry operations, I am excited to know that scientists will have a piece of Bennu to study and further deepen our understanding of our cosmic surroundings and of ourselves.

    It will take OSIRIS-REx two years to cruise back to Earth, that’s a long road trip. What music do you like to listen to on long road trips?

    Nayi: One of my long road trip playlists would shuffle around Fleetwood Mac, Converge, Florence + the Machine, Bright Eyes, Brandy, Cursive, Bruce Springsteen, Marc Anthony, Misfits, David Bowie, Ms. Lauryn Hill, Glassjaw, Hermanos Gutierrez, The Roots, Jewel, mewithoutYou, Louie Vega, Grupo Niche, Pixies, Ricardo Arjona, The Smiths, The Mountain Goats, The Clash, and on and on.

    What was your favorite moment during the mission?

    Nayi: With 2020 being such a difficult year for humankind, I was fortunate to be on a team that prioritized health, safety, and continued mission success. A favorite thing for me to observe was the progress made through each 2020 mission milestone, such as the Checkpoint Rehearsal, Matchpoint Rehearsal, and ultimately the Touch-and-Go (TAG) asteroid sample collection. It was inspiring to see a team’s dedication striving towards a shared objective, despite being further socially distanced and geographically separated than before.

    Credit: NASA

    How did you get to NASA? What training or jobs or interests led you to this position?

    Nayi: As a child, I found the work at NASA centers fascinating.  When my parents watched the news, if there happened to be a segment on a NASA mission, my ears would perk up because I thought it was incredible that we could learn about objects beyond our home planet. My uncle’s enthusiasm for space missions and the technology and science supporting them also greatly influenced me.

    I pursued my curiosity of space via an Astronautical engineering degree. While I was still in school, NASA and my undergraduate program initiated my career in spacecraft operations when they granted me the opportunity to certify as a flight controller on a NASA mission

    What is your favorite, most challenging, or most rewarding part of the work?

    Nayi: My favorite part of this work is seeing the achievements that are a direct result of every team member’s hard work. It is inspiring to work among science and engineering experts who continuously explore and understand Earth and outer space. I am delighted that these discoveries can then be shared with everyone. It is rewarding to take a step back and appreciate the depth of knowledge that has been collected for decades.

    What missions have you worked on for NASA before OSIRIS-REx?

    Nayi: I’ve been fortunate to work on two NASA Earth-observing missions and a lunar mission. I was a college intern when I worked on the Tropical Rainfall Measurement Mission (TRMM).  At TRMM, I learned how to effectively communicate with the satellite and be mindful of good spacecraft health and safety strategies. After TRMM, the Terra mission was my first full-time opportunity. I was part of the flight team that supported 24/7 on-console operations. The next mission was the Lunar Reconnaissance Orbiter (LRO), where I spent most of my operations time. That was a great experience that provided me with various ways to expand my flight console expertise and systems engineering knowledge. I also work with the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. This mission continues to provide an abundance of information on the Martian atmosphere.

    What do you do in your free time – any hobbies or sports or outside interests?

    Nayi: I enjoy reading, practicing yoga, listening to music, and spending time with loved ones. My dogs also bring me a lot of joy!

    Anything else that you’d like people to know?

    Nayi: I hope that people can find a theme of unity and progress in many of the missions that NASA has flown throughout the years. I aspire to support science and engineering to further understand our solar system and beyond and more of ourselves.

     

    By Rani Gran
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

  2. NASA’s OSIRIS-REx Leaves its Mark on Asteroid Bennu

    April 20, 2021 -

    Like boot prints on the Moon, NASA’s OSIRIS-REx spacecraft left its mark on asteroid Bennu. Now, new images — taken during the spacecraft’s final fly-over on April 7 — reveal the aftermath of its historic encounter with the asteroid.

    Bennu’s surface was disturbed in three different ways: by the force of the spacecraft touching down; by the sampling mechanism, which collected material by blowing gas into its collection filter; and by four of the spacecraft’s back-away thrusters, which moved the spacecraft away from the sample site and agitated dust and boulders on the surface. The image above shows the TAG site and highlights a large boulder thrown about 40 feet (about 12 meters). Credit: NASA/Goddard/University of Arizona

    The spacecraft flew within 2.3 miles (3.7 km) of the asteroid — the closest it has been since the Touch-and-Go, or TAG, sample collection event on Oct. 20, 2020. During TAG, the spacecraft’s sampling head sunk 1.6 feet (48.8 centimeters) into the asteroid’s surface and simultaneously fired a pressurized charge of nitrogen gas, churning up surface material and driving some into the collection chamber. The spacecraft’s thrusters also launched rocks and dust during the maneuver to reverse course and safely back away from the asteroid.

    Comparing the two images reveals obvious signs of surface disturbance. At the sample collection point, there appears to be a depression, with several large boulders evident at the bottom, suggesting that they were exposed by sampling. There is a noticeable increase in the amount of highly reflective material near the TAG point against the generally dark background of the surface, and many rocks were moved around.

    View of the Nightingale sample site before the TAG event. Images were taken on March 7, 2019, by the spacecraft’s PolyCam instrument, as part of the mission’s global mapping campaign. Credit: NASA/Goddard/University of Arizona

    Where thrusters fired against the surface, substantial mass movement is apparent. Multiple sub-meter boulders were mobilized by the plumes into a campfire ring–like shape — similar to rings of boulders seen around small craters pocking the surface.

    Jason Dworkin, the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, noticed that one boulder measuring 4 feet (1.25 meters) across on the edge of the sampling site seemed to appear only in the post-TAG image. “The rock probably weighs around a ton, with a mass somewhere between a cow and a car.”

    Dante Lauretta, of the University of Arizona and the mission’s principal investigator, later pointed out that this boulder is likely one of those present in the pre-TAG image, but much nearer the sampling location, and estimates it was thrown a distance of 40 feet (about 12 meters) by the sample collection event.

    In order to compare the before and after images, the team had to meticulously plan this final flyover. “Bennu is rough and rocky, so if you look at it from a different angle or capture it at a time when the sun is not directly overhead, that dramatically changes what the surface looks like,” says Dathon Golish, a member of the OSIRIS-REx image processing working group, headquartered at the University of Arizona. “These images were deliberately taken close to noon, with the Sun shining straight down, when there’s not as many shadows.”

    View of the Nightingale sample site after the TAG event. Images were taken on April 7, 2021, as part of a final observation campaign to document the state of the surface after TAG. Credit: NASA/Goddard/University of Arizona

    “These observations were not in the original mission plan, so we were excited to go back and document what we did,” Golish said. “The team really pulled together for this one last hurrah.”

    The spacecraft will remain in Bennu’s vicinity until departure on May 10, when the mission will begin its two-year return cruise back to Earth. As it approaches Earth, the spacecraft will jettison the Sample Return Capsule (SRC) that contains the sample from Bennu. The SRC will then travel through Earth’s atmosphere and land under parachutes at the Utah Test and Training Range on Sept. 24, 2023.

    Once recovered, the capsule will be transported to the curation facility at NASA’s Johnson Space Center in Houston, where the sample will be removed for distribution to laboratories worldwide, enabling scientists to study the formation of our solar system and Earth as a habitable planet. NASA will set 75% of the sample aside for future generations to study with technologies not invented yet.

    The OSIRIS-REx mission is the first NASA mission to visit a near-Earth asteroid, survey the surface, and collect a sample to deliver to Earth.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington, D.C.

    For more information about OSIRIS-REx visit: https://www.nasa.gov/osiris-rex

     

    By Mikayla Mace Kelley
    University of Arizona, Tucson, Ariz.

    and by Rani Gran
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

  3. NASA’s OSIRIS-REx Completes Final Tour of Asteroid Bennu

    April 7, 2021 -

    NASA’s OSIRIS-REx completed its last flyover of Bennu in around 6 am (EDT), 4am (MDT) April 7th and is now slowly drifting away from the asteroid; however, the mission team will have to wait a few more days to find out how the spacecraft changed the surface of Bennu when it grabbed a sample of the asteroid.

    This image shows a top-down view of asteroid Bennu, with a portion of the asteroid’s equatorial ridge and northern hemisphere illuminated. It was taken by the PolyCam camera on NASA’s OSIRIS-REx spacecraft on March 4, from a distance of about 186 miles (300 km). Credit: NASA/Goddard/University of Arizona

    The OSIRIS-REx team added this flyby to document surface changes resulting from the Touch and Go (TAG) sample collection maneuver October 20, 2020. “By surveying the distribution of the excavated material around the TAG site, we will learn more about the nature of the surface and subsurface materials along with the mechanical properties of the asteroid,” said Dr. Dante Lauretta, Principal Investigator for OSIRIS-REx at the University of Arizona.

    During the flyby, OSIRIS-REx imaged Bennu for 5.9 hours, covering more than a full rotation of the asteroid. It flew within 2.1 miles (3.5 kilometers) distance to the surface of Bennu – the closest it’s been since the TAG sample collection event.

    It will take until at least April 13th for OSIRIS-REx to downlink all of the data and new pictures of Bennu’s surface recorded during the flyby. It shares the Deep Space Network Antennae with other missions like Mars Perseverance, and typically gets 4-6 hours of downlink time per day. “We collected about 4,000 megabytes of data during the flyby,” said Mike Moreau, Deputy Project Manager of OSIRIS-REx at NASA Goddard Spaceflight Center. “Bennu is approximately 185 million miles from Earth right now, which means we can only achieve a downlink data-rate of 412 kilobits per second, so it will take several days to download all of the flyby data.”

    Once the mission team receives the images and other instrument data, they will study how OSIRIS-REx jumbled up Bennu’s surface. During touchdown, the spacecraft’s sampling head sunk 1.6 feet (48.8 centimeters) into the asteroid’s surface and simultaneously fired a pressurized charge of nitrogen gas. The spacecraft’s thrusters kicked up a large amount of surface material during the back-away burn – launching rocks and dust in the process.

    KinetX Flight Navigator, Leilah McCarthy, processes navigation images to help target NASA’s OSIRIS-REx final flyby of Bennu. Credit: KinetX Inc./Coralie Adam

    OSIRIS-REx, with its pristine and precious asteroid cargo, will remain in the vicinity of Bennu until May 10 when it will fire its thrusters and begin its two-year cruise home. The mission will deliver the asteroid sample to Earth September 24, 2023.

    NASA invites the public to watch OSIRIS-REx depart from Bennu on NASA.gov and NASA TV, at 4 PM EDT.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security – Regolith Explorer). Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

    Written by Rani Gran.

    For more information about this story and OSIRIS-REx visit: https://www.nasa.gov/osiris-rex

  4. OSIRIS-REx’s Final Asteroid Observation Run

    April 1, 2021 -

    NASA’s OSIRIS-REx mission is on the brink of discovering the extent of the mess it made on asteroid Bennu’s surface during last fall’s sample collection event. On Apr. 7, the OSIRIS-REx spacecraft will get one last close encounter with Bennu as it performs a final flyover to capture images of the asteroid’s surface. While performing the flyover, the spacecraft will observe Bennu from a distance of about 2.3 miles (3.7 km) – the closest it’s been since the Touch-and-Go Sample Collection event on Oct. 20, 2020.

    This artist’s concept shows the planned flight path of NASA’s OSIRIS-REx spacecraft during its final flyby of asteroid Bennu, which is scheduled for April 7. Credit: NASA/Goddard/University of Arizona

    The OSIRIS-REx team decided to add this last flyover after Bennu’s surface was significantly disturbed by the sample collection event. During touchdown, the spacecraft’s sampling head sunk 1.6 feet (48.8 centimeters) into the asteroid’s surface and simultaneously fired a pressurized charge of nitrogen gas. The spacecraft’s thrusters also mobilized a substantial amount of surface material during the back-away burn. Because Bennu’s gravity is so weak, these various forces from the spacecraft had a dramatic effect on the sample site – launching many of the region’s rocks and a lot of dust in the process. This final flyby of Bennu will provide the mission team an opportunity to learn how the spacecraft’s contact with Bennu’s surface altered the sample site and the region surrounding it.

    The single flyby will mimic one of the observation sequences conducted during the mission’s Detailed Survey phase in 2019. OSIRIS-REx will image Bennu for 5.9 hours, which is just over a full rotation period of the asteroid. Within this timeframe, the spacecraft’s PolyCam imager will obtain high-resolution images of Bennu’s northern and southern hemispheres and its equatorial region. The team will then compare these new images with the previous high-resolution imagery of the asteroid obtained during 2019.

    Most of the spacecraft’s other science instruments will also collect data during the flyover, including the MapCam imager, the OSIRIS-REx Thermal Emission Spectrometer (OTES), the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), and the OSIRIS-REx Laser Altimeter (OLA). Exercising these instruments will give the team a chance to assess the current state of each science instrument onboard the spacecraft, as dust coated the instruments during the sample collection event. Understanding the health of the instruments is also part of NASA’s evaluation of possible extended mission opportunities after the sample is delivered to Earth.

    After the Bennu flyby, it will take several days for the data from the flyover to be downlinked to Earth. Once the data are downlinked, the team will inspect the images to understand how OSIRIS-REx disturbed the asteroid’s surface material. At this point, the team will also be able to evaluate the performance of the science instruments.

    The spacecraft will remain in asteroid Bennu’s vicinity until May 10, when the mission will enter its Return Cruise phase and begin its two-year journey back to Earth. As it approaches Earth, the spacecraft will jettison the Sample Return Capsule (SRC) that contains the rocks and dust collected from Bennu. The SRC will then travel through the Earth’s atmosphere and land under parachutes at the Utah Test and Training Range on Sep. 24, 2023.

    Once recovered, the capsule will be transported to the curation facility at the agency’s Johnson Space Center in Houston, where the sample will be removed for distribution to laboratories worldwide, enabling scientists to study the formation of our solar system and Earth as a habitable planet.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

Subscribe for all mission updates.

  • This field is for validation purposes and should be left unchanged.