The Asteroid Alphabet

Journey with us through the alphabet as we learn about Earth’s rocky neighbors – the asteroids! There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! For each letter of the alphabet, we will showcase an asteroid in our solar system and demonstrate its orbit around the Sun. Visit the Galleries page of AsteroidMission.org – home of the Asteroid Alphabet cards – to collect them all!

Asteroids orbit the Sun in many different areas of our solar system. The Main Belt asteroids lie between Mars and Jupiter. There are also asteroids whose paths around the Sun bring them close to Earth. Those asteroids are called Near-Earth Asteroids, or NEAs. Another group of asteroids, called Trojans, can be found orbiting different planets in gravitationally-neutral areas.

The latest Asteroid Alphabet card is below! Be sure to check out the Instructions for Assembly and Helpful Hints for putting together this new addition to your Asteroid Alphabet card collection!

Instructions for Assembly
1. Print this page out.
2. Cut along the dotted lines, leaving a white border around the card. *Kids, be sure to get an adult’s supervision during this step!*
3. Fold along the solid center line, so that the blank sides are facing each other.
4. Tape along edges.

Helpful Hints
- Using cardstock or a thicker paper will result in a sturdier card.
- For best results, print in color and use double-sided tape or a gluestick to affix the two sides together.

The Asteroid Alphabet

54509 YORP

Asteroid YORP was named for the YORP effect because scientists first observed the effect on this asteroid. When scientists measured YORP’s rotation rate, they confirmed that an asteroid’s rate of rotation could be affected by sunlight.

<table>
<thead>
<tr>
<th>ORBITAL CHARACTERISTICS</th>
<th>Discovery: Aug 2, 2006</th>
<th>Discovery: LEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital Eccentricity: 0.23</td>
<td>Orbital Period: 365 days</td>
<td></td>
</tr>
<tr>
<td>Inclination: 16 degrees</td>
<td>Perihelion Distance: 0.77 AU</td>
<td></td>
</tr>
<tr>
<td>Aphelion Distance: 2.34 AU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Diameter: 4.75 kilometers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation Period: 9.2 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Type: Diamon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSIRIS-REx
Asteroid Sample Return Mission

For more information, visit nasa.gov/OSIRIS-REx.
facebook.com/OSIRISREx
twitter.com/OSIRISREx
youtube.com/OSIRISReX
dsauretta.com

NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission is the first U.S. mission to fly to, study, and retrieve a pristine sample of an asteroid and return it to Earth for further study. The OSIRIS-REx spacecraft’s target is asteroid Bennu, the most accessible carbonaceous asteroid and one of the most potentially hazardous to Earth late in the 22nd century. Its bulk properties have been well studied by ground and space-based telescopes, greatly reducing mission risk and providing strong evidence for the presence of material available for sampling.