1. NASA’S OSIRIS-REx Spacecraft Arrives at Asteroid Bennu

    December 3, 2018 -

    NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft completed its 1.2 billion-mile (2 billion-kilometer) journey to arrive at the asteroid Bennu Monday. The spacecraft executed a maneuver that transitioned it from flying toward Bennu to operating around the asteroid.

    This series of images taken by the OSIRIS-REx spacecraft shows Bennu in one full rotation from a distance of around 50 miles (80 km). The spacecraft’s PolyCam camera obtained the 36 2.2-millisecond frames over a period of four hours and 18 minutes. Credit: NASA/Goddard/University of Arizona

    Now, at about 11.8 miles (19 kilometers) from Bennu’s Sun-facing surface, OSIRIS-REx will begin a preliminary survey of the asteroid. The spacecraft will commence flyovers of Bennu’s north pole, equatorial region, and south pole, getting as close as nearly 4 miles (7 kilometers) above Bennu during each flyover.

    The primary science goals of this survey are to refine estimates of Bennu’s mass and spin rate, and to generate a more precise model of its shape. The data will help determine potential sites for later sample collection.

    OSIRIS-REx’s mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. Asteroids are remnants of the building blocks that formed the planets and enabled life. Those like Bennu contain natural resources, such as water, organics and metals. Future space exploration and economic development may rely on asteroids for these materials.

    “As explorers, we at NASA have never shied away from the most extreme challenges in the solar system in our quest for knowledge,” said Lori Glaze, acting director for NASA’s Planetary Science Division. “Now we’re at it again, working with our partners in the U.S. and Canada to accomplish the Herculean task of bringing back to Earth a piece of the early solar system.”

    The mission’s navigation team will use the preliminary survey of Bennu to practice the delicate task of navigating around the asteroid. The spacecraft will enter orbit around Bennu on Dec. 31 –thus making Bennu, which is only about 1,600 feet (492 meters) across — or about the length of five football fields — the smallest object ever orbited by a spacecraft. It’s a critical step in OSIRIS-REx’s years-long quest to collect and eventually deliver at least two ounces (60 grams) of regolith — dirt and rocks — from Bennu to Earth.

    Starting in October, OSIRIS-REx performed a series of braking maneuvers to slow the spacecraft down as it approached Bennu. These maneuvers also targeted a trajectory to set up Monday’s maneuver, which initiates the first north pole flyover and marks the spacecraft’s arrival at Bennu.

    “The OSIRIS-REx team is proud to cross another major milestone off our list — asteroid arrival,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “Initial data from the approach phase show this object to have exceptional scientific value. We can’t wait to start our exploration of Bennu in earnest. We’ve been preparing for this moment for years, and we’re ready.”

    OSIRIS-REx mission marks many firsts in space exploration. It will be the first U.S. mission to carry samples from an asteroid back to Earth and the largest sample returned from space since the Apollo era. It’s the first to study a primitive B-type asteroid, which is an asteroid that’s rich in carbon and organic molecules that make up life on Earth. It is also the first mission to study a potentially hazardous asteroid and try to determine the factors that alter their courses to bring them close to Earth.

    “During our approach toward Bennu, we have taken observations at much higher resolution than were available from Earth,” said Rich Burns, the project manager of OSIRIS-REx at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These observations have revealed an asteroid that is both consistent with our expectations from ground-based measurements and an exceptionally interesting small world. Now we embark on gaining experience flying our spacecraft about such a small body.”

    When OSIRIS-REx begins to orbit Bennu at the end of this month, it will come close to approximately three quarters of a mile (1.25 kilometers) to its surface. In February 2019, the spacecraft begins efforts to globally map Bennu to determine the best site for sample collection. After the collection site is selected, the spacecraft will briefly touch the surface of Bennu to retrieve a sample. OSIRIS-REx is scheduled to return the sample to Earth in September 2023.

    Goddard provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama for the agency’s Science Mission Directorate in Washington.

  2. TAGSAM Testing Complete: OSIRIS-REx Prepared to TAG an Asteroid

    By Christine Hoekenga

    November 16, 2018 -

    On Nov. 14, NASA’s OSIRIS-REx spacecraft stretched out its robotic sampling arm for the first time in space. The arm, more formally known as the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), is key to the spacecraft achieving the primary goal of the mission: returning a sample from asteroid Bennu in 2023.

    OSIRIS-REx's TAGSAM Head as Imaged by SamCam

    This image, showing the OSIRIS-REx Touch-and-Go Sample Acquisition Mechanism (TAGSAM) sampling head extended from the spacecraft at the end of the TAGSAM arm, was taken by the SamCam camera on Nov. 14, 2018 during a visual checkout of the spacecraft’s sampling system. A similar observation will be taken after TAG to help document the asteroid material collected in the TAGSAM head. Credit: NASA/Goddard/University of Arizona

    As planned, engineers at Lockheed Martin commanded the spacecraft to move the arm through its full range of motion – flexing its shoulder, elbow, and wrist “joints.” This long-awaited stretch, which was confirmed by telemetry data and imagery captured by the spacecraft’s SamCam camera, demonstrates that the TAGSAM head is ready to collect a sample of loose dirt and rock (called regolith) from Bennu’s surface.

    “The TAGSAM exercise is an important milestone, as the prime objective of the OSIRIS-REx mission is to return a sample of Bennu to Earth,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “This successful test shows that, when the time comes, TAGSAM is ready to reach out and tag the asteroid.”

    Years of innovation

    Lockheed Martin engineers spent more than a decade designing, building, and testing TAGSAM, which includes an 11-foot (3.35-meter) arm with three articulating joints, a round sampler head at the end of the arm that resembles the air filter in a car, and three bottles of high-pressure nitrogen gas.

    This test deployment was a rehearsal for a date in mid-2020 when the spacecraft will unfold the TAGSAM arm again, slowly descend to Bennu’s surface, and briefly touch the asteroid with the sampler head. A burst of nitrogen gas will stir up regolith on the asteroid’s surface, which will be caught in the TAGSAM head. The TAG sequence will take about five seconds, after which the spacecraft will execute small maneuvers to carefully back away from Bennu. Afterward, SamCam will image the sampler head, as it did during the test deployment, to help confirm that TAGSAM collected at least 2.1 ounces (60 grams) of regolith.

    The TAGSAM mechanism was designed for the key challenge unique to the OSIRIS-REx mission: collecting a sample from the smallest planetary body ever to be orbited by a spacecraft. “First-of-its-kind innovations like this one serve as the precursor for future missions to small bodies,” said Sandy Freund, systems engineer manager and Lockheed Martin OSIRIS-REx MSA manager. “By proving out these technologies and techniques, we are going to be able to return the largest sample from space in half a century and pave the way for other missions.”

    A month of testing

    The unfolding of the TAGSAM arm was the latest and most significant step in a series of tests and check-outs of the spacecraft’s sampling system, which began in October when OSIRIS-REx jettisoned the cover that protected the TAGSAM head during launch and the mission’s outbound cruise phase. Shortly before the cover ejection, and again the day after, OSIRIS-REx performed two spins called Sample Mass Measurements. By comparing the spacecraft’s inertial properties during these before-and-after spins, the team confirmed that the 2.67-pound (1.21-kilogram) cover was successfully ejected on Oct. 17.

    A week later, on Oct. 25, the Frangibolts holding the TAGSAM arm in place fired successfully, releasing the arm and allowing the team to move it into a parked position just outside its protective housing. After resting in this position for a few weeks, the arm was fully deployed into its sampling position, its joints were tested, and images were captured with SamCam. The spacecraft will execute two additional Sample Mass Measurements over the next two days. The mission team will use these spins as a baseline to compare with the results of similar spins that will be conducted after TAG in 2020 in order to confirm the mass of the sample collected.

    Although the sampling system was rigorously tested on Earth, this rehearsal marked the first time that the team has deployed TAGSAM in the micro-gravity environment of space.

    “The team is very pleased that TAGSAM has been released, deployed, and is operating as commanded through its full range of motion.” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has been restrained for over two years since launch, so it is gratifying to see it out of its shackles and performing well.”

    OSIRIS-REx is scheduled to arrive at Bennu on Dec. 3. It will spend nearly one year surveying the asteroid with five scientific instruments so that the mission team can select a location that is safe and scientifically interesting to collect the sample.

    “Now that we have put TAGSAM through its paces in space and know it is ready to perform at Bennu, we can focus on the challenges of navigating around the asteroid and seeking out the best possible sample site,” said Lauretta.

  3. NASA’s OSIRIS-REx Executes Fourth Asteroid Approach Maneuver

    November 13, 2018 -

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its Attitude Control System (ACS) thrusters.

    NASA’s OSIRIS-REx spacecraft executed its fourth Asteroid Approach Maneuver (AAM-4) yesterday. The spacecraft fired its Attitude Control System (ACS) thrusters to slow the spacecraft from approximately 0.31 mph (0.14 m/sec) to 0.10 mph (0.04 m/sec). The ACS thrusters are capable of velocity changes as small as 0.02 mph (0.01 m/sec). The mission team will continue to examine telemetry and tracking data over the next week to verify the new trajectory. The maneuver targeted the spacecraft to fly through a corridor designed for the collection of high-resolution images that will be used to build a shape model of Bennu.

    With the execution of AAM-4, the OSIRIS-REx spacecraft concludes a six-week series of Bennu approach maneuvers. AAM-1 and AAM-2, which executed on Oct. 1 and Oct. 15 respectively, slowed the spacecraft by a total of approximately 1,088 mph (486 m/sec). AAM-3 and AAM-3A, which executed on Oct. 29 and Nov. 5 respectively, further refined the spacecraft’s trajectory and speed to set the conditions for a successful AAM-4 maneuver. After a final correction maneuver scheduled for Nov. 30, the spacecraft will be on track to arrive at a position 12 miles (20 km) from Bennu on Dec. 3.

  4. Behind the Scenes of REXIS: Uncovering an Instrument in Flight

    By Rebecca Masterson, REXIS Instrument Program Manager

    November 13, 2018 -

    On Sept. 14, OSIRIS-REx’s REXIS instrument opened its radiation cover, as scheduled, after two years in space. The cover had been in place to protect REXIS’s charge-coupled devices (CCDs) from degradation due to radiation exposure during the spacecraft’s cruise to Bennu. The REXIS student team designed and built the cover with input from MIT and NASA Goddard mentors and members of the OSIRIS-REx review board.

    Figure 1: CAD model of the REXIS cover in the closed position, showing the Frangibolt housing and cover heater. The flight instrument also includes a heater on the Frangibolt housing that is not shown here.

    Since its installation, the radiation cover had been held closed with a titanium bolt that was threaded through a TiNi Aerospace FD04 Frangibolt and a switch washer (see Figure 1). When it was time to release the cover, the team sent REXIS a command to heat the Frangibolt until the shape memory alloy expanded. This put the bolt under tension, causing structural failure, so that the cover was free to swing open. The switch washer sensed the change in pre-load at the joint and sent a signal to the REXIS electronics board to cut power to the Frangibolt, stopping the activity.

    Figure 2: Photo of the REXIS flight instrument (before spacecraft integration) with radiation cover open. This configuration is the most-likely current configuration of the instrument on-board OSIRIS-REx after firing the Frangibolt.

    In the event that the switch washer did not work as expected, the team had also set a software timer to end the actuation activity in order to ensure that the Frangibolt did not overheat. The exact time needed to actuate the Frangibolt was unknown, as it depended heavily on the temperatures of the actuator and the cover as well as the pre-load in the joint. Therefore, the REXIS team tested both the flight instrument and spare covers in advance to try to set this timer correctly. Three attempts to open the instrument were planned, each with a slightly longer timer setting.

    For the first attempt, the team set the REXIS firing timer to 57 seconds. If the switch washer didn’t show actuation in that time, the bolt was programmed to turn off. The firing command was sent to the instrument at about 16:32 UTC. Fifty-five seconds later, the switch washer indicated that the Frangibolt had actuated … with only two seconds to spare. Kudos to the team that tested the spare cover over various temperature ranges in order to guide us to such a perfect timer setting.

    We also saw evidence of the firing in the onboard instrument temperature sensors: the housing temperature and the CCD temperature both decreased after the firing, which indicated that the cover was no longer conductively connected to the instrument tower (see Figure 3).

     

    Figure 3: The REXIS housekeeping temperatures before and after firing also show changes expected with the cover open. Both the CCD temperatures (top plot) and the Frangibolt housing temperature (middle plot, “Frangibolt”) decrease after the firing event indicating that the cover and its heater are no longer thermally coupled to the rest of the instrument.

     

    The duty cycle of the housing heater and the cover heater also changed as expected. The REXIS Frangibolt housing heater stayed on after the cover opening  since the housing is no longer getting heat from the cover heater. The cover heater duty cycle has also lengthened since the thermal mass has decreased (see Figure 4).

     

    Figure 4: REXIS cover heater current values during the cover opening event. Before the cover was open both the housing heater and the cover heater were cycling with a short duty cycle. The changes in the data after the firing attempt indicate that the housing heater is now always on and the cover heater is cycling less frequently. This behavior is expected in the cover open state.

     

    REXIS took 30 minutes of science data before and after the Frangibolt firing so we could compare the spectra. With the cover open, we were expecting to see an increase in the rate of events detected by the CCDs, dominantly in the low energy portion of the x-ray spectrum due to the Cosmic X-ray Background (CXB). The cover included an Fe-55 calibration source that shone on the CCDs and had been used to monitor the instrument status for its two years in flight. Opening the cover removed that source from the field of view of the CCDs, so we also expected to see a decrease in the Fe-55 energy detected. As expected, the rate of events detected by the CCDs increased, as shown in Figure 4. The x-ray spectrum from one of the instrument’s highest performing CCD nodes is shown in Figure 5.

    Figure 5: Rate of X-ray events detected by the CCDs during the cover opening activity. The detected event rate has a discontinuous step in the 30 minutes before and after the cover opened. The increase in the event rate is due to diffuse x-ray emission of the cosmic x-ray background as expected with an open cover.

    The x-ray spectrum measured in the low energy range increased, just as expected for the CXB ,while the calibration source signal from Fe-55 became less pronounced. The data in Figure 5 and Figure 6 are consistent with a fully open REXIS cover.

    Figure 6: The x-ray spectrum is a measure of the number of events detected by the CCDs as a function of energy. The red line is the x-ray spectra detected by one of the highest-performing nodes in the REXIS detector array before the cover opened. There is a peak 5.9 keV (the blue shaded region) from the cover-mounted internal Fe-55 x-ray calibration source. The low energy spectrum is due to only internal noise. The spectrum after the cover opened for the same node (black line) shows detection of a low-energy continuum consistent with predictions of the cosmic x-ray background (blue dashed line) and a weakening of the Fe-55 line indicating that the instrument is now looking at cosmic x-rays from space instead of the underside of the cover.

    Given both this science and engineering data, we are confident that our radiation cover is open and out of the field of view of the REXIS CCDs. Now the REXIS team can start doing real external calibrations. REXIS will be looking at some Cosmic X-Ray Background (CXB) in early October and then will turn to check out the Crab Nebula in November.

  5. NASA’s OSIRIS-REx Executes Third Asteroid Approach Maneuver

    October 29, 2018 -

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its trajectory correction maneuver (TCM) engines.

    NASA’s OSIRIS-REx spacecraft executed its third Asteroid Approach Maneuver (AAM-3) today. The trajectory correction maneuver (TCM) thrusters fired in a series of two braking maneuvers designed to slow the spacecraft’s speed relative to Bennu from approximately 11.7 mph (5.2 m/sec) to .24 mph (.11 m/sec). Due to constraints that science instruments not be pointed too closely to the Sun, this maneuver was designed as two separate burns of approximately 5.8 mph (2.6 m/sec) each, to accomplish a net change in velocity of around 11.5 mph (5.13 m/sec). The mission team will continue to examine telemetry and tracking data over the next week to verify the new trajectory. The maneuver targeted the spacecraft to fly through a corridor designed for the collection of high-resolution images that will be used to build a shape model of Bennu.

    The OSIRIS-REx spacecraft is in the midst of a six-week series of final approach maneuvers. AAM-1 and AAM-2, which executed on Oct. 1 and Oct. 15 respectively, slowed the spacecraft by a total of approximately 1,088 mph (486 m/sec). The last of the burns, AAM-4, is scheduled for Nov. 12 and will adjust the spacecraft’s trajectory to arrive at a position 12 miles (20 km) from Bennu on Dec. 3.

  6. Safety & Science: OSIRIS-REx on the Lookout for Hazards During Approach

    By Christine Hoekenga

    October 17, 2018 -

    An artist’s concept of OSIRIS-REx searching for dust plumes in the vicinity of asteroid Bennu. Credit: University of Arizona

    On Sept. 12, OSIRIS-REx pointed its medium-range science camera, MapCam, toward asteroid Bennu 621,000 miles (one million kilometers) in the distance. Slewing gently side to side and up and down as it captured 64 images, the spacecraft scanned the area around the asteroid in a carefully choreographed pattern. The day before, it had collected a similar mosaic of images with its long-range science camera, PolyCam.

    Over the next few days, scientists on the ground pored over the images, looking for any signs of dust in the vicinity of the asteroid, which could present a hazard to the spacecraft as it approaches. Ultimately, they determined that the coast is clear – for now.

    But OSIRIS-REx will look for natural satellites (small moons) and conduct another search for dust plumes when the spacecraft is closer to Bennu.

    No dust was detected in this MapCam image of the area around Bennu (circled in green) taken Sept. 12, 2018 during OSIRIS-REx’s first Dust Plume Search. Credit: NASA/Goddard/University of Arizona

    While comets, with their characteristic tails and comas, are known for releasing plumes of volatile materials like ice, gas, and dust, this behavior has also been observed in some asteroids. If dust had been visible in the images collected in mid-September, it would have suggested that Bennu had comet-like plume activity in the recent past, probably in the weeks or months before OSIRIS-REx conducted its first dust search.

    Although OSIRIS-REx is designed to withstand the rigors of spaceflight and the occasional collision with stray particles, flying through a dust plume would pose a risk to the spacecraft’s instruments and solar panels. If the mission team had identified plume activity in the images, they had contingency plans to execute a braking maneuver, placing the spacecraft at a safe distance so that the dust activity could be studied further.

    The existence of dust plumes would suggest that Bennu has active deposits of ice or other volatiles. Finding frozen water on the asteroid would be an exciting result for mission scientists who are in part studying Bennu to understand whether asteroids could have been the delivery mechanism for the water and organic materials needed to seed life on Earth billions of years ago. Plumes would also have implications for where OSIRIS-REx could safely collect a sample of material from Bennu’s surface in 2020 – and what types of material would likely be in that sample.

    A view of Comet 67P backlit by the Sun makes plumes coming off the comet’s surface highly visible. Credit: ESA/Rosetta/NAVCAM

    “We probably wouldn’t want to sample too near a vent for safety reasons,” says Carl Hergenrother, the OSIRIS-REx Astronomy Working Group Lead, who helped plan the hazard searches. “But it would be interesting since plumes mean that there could be subsurface volatile material nearby.”

    OSIRIS-REx’s second dust plume search, scheduled for two days in Spring 2019 when the spacecraft will be about 3.1 miles (five kilometers) from Bennu, will look for active dust plumes coming off Bennu’s surface. For those observations, the spacecraft will be positioned between the Sun and the asteroid (at a high phase angle) so that Bennu is backlit and any dust plumes are more visible. Some of the 13 mosaics that the spacecraft captures will include offset images of the asteroid so that any jets coming from the surface are easier to see against the dark backdrop of space.

    Dust isn’t the only potential hazard that OSIRIS-REx is looking out for. Later this fall, the spacecraft will use PolyCam and MapCam to search for natural satellites – any chunk of rock orbiting Bennu that is larger than 10 centimeters and bright enough to be seen (which requires an albedo of at least 0.03). While most asteroids exert a weak gravitational pull due to their relatively small sizes (Bennu has a diameter of roughly 500 meters), they are capable of holding small moons in orbit around themselves. In fact, asteroid 243 Ida, the second asteroid ever visited by a spacecraft, surprised scientists when images from the Galileo mission revealed it had a small moon, now called Dactyl.

    Asteroid Ida and its moon, Dactyl

    243 Ida is the second asteroid visited by a spacecraft (Galileo) and the first found to have its own moon. Credit: NASA/JPL

    To look for moons, two of OSIRIS-REx’s cameras will again capture a series of carefully planned mosaics covering the area around Bennu. First, PolyCam will map the asteroid’s entire Hill Sphere (the area where a satellite could theoretically exist), looking for objects that are one meter or larger. Then, as the spacecraft gets closer, MapCam will conduct a search pattern for smaller satellites (down to 10 centimeters), which could only exist in a stable orbit closer to Bennu.

    Similar to a dust plume discovery, if OSIRIS-REx were to detect a natural satellite orbiting Bennu, it would trigger a contingency plan. The spacecraft would conduct a braking burn and stop its approach to the asteroid about 40 or 50 kilometers out. The team would then take a few weeks to closely map the moon’s orbit around Bennu and decide whether any changes need to be made to the mission plan for the spacecraft to safely avoid the satellite. Later on, the team would study the moon in more depth, collecting images and other data about its color, reflectivity, shape, size, and other features.

     

    Also similar to a dust plume detection, a moon would be an interesting scientific discovery. “If we did find a satellite, mapping its orbit would allow us to refine the mass of Bennu before going into orbit around the asteroid or even doing close approaches,” says Hergenrother. “It would also tell us more about Bennu’s history.”

    While potential hazards like dust and natural satellites present navigation, safety and other challenges, they are part of the inherent adventure of exploring a never-before-visited world. Although Bennu has been thoroughly studied from Earth, the asteroid may have many surprises in store for the mission team. Careful planning and thorough observation strategies will ensure that these surprises are transformed from potential hazards into new scientific knowledge.

  7. NASA’s OSIRIS-REx Executes Second Asteroid Approach Maneuver

    October 15, 2018 -

    NASA’s OSIRIS-REx spacecraft executed its second Asteroid Approach Maneuver (AAM-2) today. The spacecraft’s main engine thrusters fired in a braking maneuver designed to slow the spacecraft’s speed relative to Bennu from 315 mph (141 m/sec) to 11.8 mph (5.2 m/sec). Likewise, the spacecraft’s approach speed dropped from nearly 7,580 miles (12,200 km) to 280 miles (450 km) per day.

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its main engine. Credit: University of Arizona

    The mission team will continue to examine telemetry and tracking data and will have more information over the next week. This burn marked the last planned use of the spacecraft’s main engines prior to OSIRIS-REx’s departure from Bennu in March 2021.

    The OSIRIS-REx spacecraft is in the midst of a six-week series of maneuvers designed to fly the spacecraft through a precise corridor toward Bennu. AAM-1, which executed on Oct. 1, slowed the spacecraft by 785.831 mph (351.298 m/sec) and consumed 532.4 pounds (241.5 kilograms) of fuel. AAM-3 is schedule for October 29. The last of the burns, AAM-4, is scheduled for November 12 and will adjust the spacecraft’s trajectory to arrive at a position 12 miles (20 km) from Bennu on December 3. After arrival, the spacecraft will perform a series of fly-bys over Bennu’s poles and equator.

  8. NASA’s OSIRIS-REx Executes First Asteroid Approach Maneuver

    October 1, 2018 -

    NASA’s OSIRIS-REx spacecraft executed its first Asteroid Approach Maneuver (AAM-1) today putting it on course for its scheduled arrival at the asteroid Bennu in December.

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its main engine. Credit: University of Arizona

    The spacecraft’s main engine thrusters fired in a braking maneuver designed to slow the spacecraft’s speed relative to Bennu from approximately 1,100 mph (491 m/sec) to 313 mph (140 m/sec). The mission team will continue to examine telemetry and tracking data as they become available and will have more information on the results of the maneuver over the next week.

    During the next six weeks, the OSIRIS-REx spacecraft will continue executing the series of asteroid approach maneuvers designed to fly the spacecraft through a precise corridor during its final slow approach to Bennu. The last of these, AAM-4, scheduled for November 12, will adjust the spacecraft’s trajectory to arrive at a position 12 miles (20 km) from Bennu on December 3. After arrival, the spacecraft will initiate asteroid proximity operations by performing a series of fly-bys over Bennu’s poles and equator.

  9. NASA’s OSIRIS-REx Begins Asteroid Operations Campaign

    August 24, 2018 -
    Asteroid Bennu moving againts a star field

    On Aug. 17, the OSIRIS-REx spacecraft obtained the first images of its target asteroid Bennu from a distance of 1.4 million miles (2.2 million km), or almost six times the distance between the Earth and Moon. This cropped set of five images was obtained by the PolyCam camera over the course of an hour for calibration purposes and in order to assist the mission’s navigation team with optical navigation efforts. Bennu is visible as a moving object against the stars in the constellation Serpens.

    After an almost two-year journey, NASA’s asteroid sampling spacecraft, OSIRIS-REx, caught its first glimpse of asteroid Bennu last week and began the final approach toward its target. Kicking off the mission’s asteroid operations campaign on Aug. 17, the spacecraft’s PolyCam camera obtained the image from a distance of 1.4 million miles (2.2 million km).

    OSIRIS-REx is NASA’s first mission to visit a near-Earth asteroid, survey the surface, collect a sample and deliver it safely back to Earth. The spacecraft has traveled approximately 1.1 billion miles (1.8 billion km) since its Sept. 8, 2016, launch and is scheduled to arrive at Bennu on Dec. 3.

    “Now that OSIRIS-REx is close enough to observe Bennu, the mission team will spend the next few months learning as much as possible about Bennu’s size, shape, surface features, and surroundings before the spacecraft arrives at the asteroid,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “After spending so long planning for this moment, I can’t wait to see what Bennu reveals to us.”

    As OSIRIS-REx approaches the asteroid, the spacecraft will use its science instruments to gather information about Bennu and prepare for arrival.  The spacecraft’s science payload comprises the OCAMS camera suite (PolyCam, MapCam, and SamCam), the OTES thermal spectrometer, the OVIRS visible and infrared spectrometer, the OLA laser altimeter, and the REXIS x-ray spectrometer.

    During the mission’s approach phase, OSIRIS-REx will:

    • regularly observe the area around the asteroid to search for dust plumes and natural satellites, and study Bennu’s light and spectral properties;
    • execute a series of four asteroid approach maneuvers, beginning on Oct. 1, slowing the spacecraft to match Bennu’s orbit around the Sun;
    • jettison the protective cover of the spacecraft’s sampling arm in mid-October and subsequently extend and image the arm for the first time in flight; and
    • use OCAMS to reveal the asteroid’s overall shape in late-October and begin detecting Bennu’s surface features in mid-November.

    After arrival at Bennu, the spacecraft will spend the first month performing flybys of Bennu’s north pole, equator, and south pole, at distances ranging between 11.8 and 4.4 miles (19 and 7 km) from the asteroid. These maneuvers will allow for the first direct measurement of Bennu’s mass as well as close-up observations of the surface. These trajectories will also provide the mission’s navigation team with experience navigating near the asteroid.

    “Bennu’s low gravity provides a unique challenge for the mission,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “At roughly 0.3 miles [500 meters] in diameter, Bennu will be the smallest object that any spacecraft has ever orbited.”

    The spacecraft will extensively survey the asteroid before the mission team identifies two possible sample sites. Close examination of these sites will allow the team to pick one for sample collection, scheduled for early July 2020. After sample collection, the spacecraft will head back toward Earth before ejecting the Sample Return Capsule for landing in the Utah desert in Sept. 2023.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  10. Successful Second Deep Space Maneuver for OSIRIS-REx Confirmed

    July 3, 2018 -

    New tracking data confirms that NASA’s OSIRIS-REx spacecraft successfully completed its second Deep Space Maneuver (DSM-2) on June 28. The thruster burn put the spacecraft on course for a series of asteroid approach maneuvers to be executed this fall that will culminate with the spacecraft’s scheduled arrival at asteroid Bennu on Dec. 3.

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its TCM thrusters. Credit: University of Arizona

    The DSM-2 burn, which employed the spacecraft’s Trajectory Correction Maneuver (TCM) thruster set, resulted in a 37 miles per hour (16.7 meters per second) change in the vehicle’s velocity and consumed 28.2 pounds (12.8 kilograms) of fuel.

    Tracking data from the Deep Space Network provided preliminary confirmation of the burn’s execution, and the subsequent downlink of telemetry from the spacecraft shows that all subsystems performed as expected.

    DSM-2 was OSIRIS-REx’s last deep space maneuver of its outbound cruise to Bennu. The next engine burn, Asteroid Approach Maneuver 1 (AAM-1), is scheduled for early October. AAM-1 is a major braking maneuver designed to slow the spacecraft’s speed from approximately 1,130 to 320 miles per hour (506.2 to 144.4 meters per second) relative to Bennu and is the first of four asteroid approach maneuvers scheduled for this fall.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space in Denver built the spacecraft and is providing spacecraft flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  11. OSIRIS-REx Executes Second Deep Space Maneuver

    June 28, 2018 -

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its TCM thrusters. Credit: University of Arizona

    NASA’s OSIRIS-REx spacecraft executed its second Deep Space Maneuver today, which put the spacecraft on course for its scheduled arrival at the asteroid Bennu in December. The mission team will continue to examine telemetry and tracking data as they become available and will have more information on the results of the maneuver over the next week.

  12. Two Pieces of a Cosmic Puzzle: Hayabusa2 and OSIRIS-REx

    By Christine Hoekenga

    June 22, 2018 -

    It began with dust. Before there were asteroids, or planets, or people – about 4.6 billion years ago – a cloud of dust and gas swirled in the cosmos. At the center, a star began to form.

    With heat and shock waves, clumps of this ancient dust coalesced into droplets of molten rock called chondrules. These chondrules and dust became the building blocks of the Solar System. Eventually, chunks of material as large as asteroids, and even planets, formed from this cloud and organized according to the laws of physics around a newly born star: our Sun.

    Scientists believe one of these chunks became a protoplanet that eventually broke apart in a collision, giving rise to an asteroid that humans would one-day dub Bennu. Another (or perhaps the same) chunk produced another asteroid that would become known as Ryugu. Long before humans were around to give them names or contemplate their origins, both asteroids migrated from the asteroid belt between Mars and Jupiter into near-Earth space and settled into new orbits.

    It wasn’t until hundreds of millions of years later, in the 1800s, that human astronomers trained their telescopes on the sky and began identifying and studying asteroids. Fast forward to 1999. That year, the Lincoln Near-Earth Asteroid Research (LINEAR) survey discovered two near-Earth asteroids that would go on to become the targets for two robotic sample return missions: NASA’s OSIRIS-REx, launched in 2016 to study asteroid Bennu, and the Japanese Aerospace Exploration Agency’s Hayabusa2, launched in 2014 to study Ryugu.

    Even though humans have intently studied asteroids for centuries, we have had very few opportunities to get our hands on material directly from these cosmic time capsules. Meteorites, which are pieces of asteroids that have fallen to Earth, provide important clues about the early days of the Solar System, but they have two major limitations. First, scientists aren’t certain which parent bodies (asteroids) gave rise to most of them. Second, they are not clean, unaltered samples. After withstanding the heat of atmospheric entry, they land on the ground, where they become contaminated with materials from Earth and immediately begin to corrode.

    The only sample humanity has ever collected directly from an asteroid came back with JAXA’s Hayabusa Mission in 2010. That sample contains less than a milligram of particles from Itokowa, a “stony” asteroid with high silica content.

    Soon, though, we’ll have two new opportunities to study pristine asteroid material. This time the samples will come from the carbon-rich asteroids Bennu and Ryugu. These asteroids are of particular interest because they contain the very oldest material from the stellar nursery – and because carbon-bearing compounds are the basis of life as we know it. These samples, and the organic molecules they contain, will help shed light on some of humanity’s grand mysteries: Where did we come from? How did life develop on Earth?

    Both spacecraft will reach their respective destinations during 2018 – Hayabusa2 in June and OSIRIS-REx in December – and the missions fit together like two adjoining pieces of a cosmic puzzle. In combination, the data and discoveries from these two asteroid explorers will reveal a long-shrouded portion of the Solar System’s portrait.

    Mapping, navigating around, and collecting samples from small Solar System bodies are all relatively new endeavors for humanity, and the two mission teams have already been sharing ideas, data, and lessons learned for several years as part of a major partnership between NASA and JAXA. This exchange will continue as the two spacecraft operate in close proximity to their target asteroids. The OSIRIS-REx team will host Japanese scientists in the Science Operations Center at the University of Arizona, and OSIRIS-REx team members will travel to JAXA during Hayabusa2’s operations. They will share software, data, techniques for analysis, and aspects of each other’s cultural systems in the process. Ultimately, the two agencies will exchange portions of the returned samples as well.

    However, the two missions’ strategies for exploration are quite different. For starters, OSIRIS-REx will go into orbit around Bennu during two separate phases of asteroid operations. All told, the NASA spacecraft will spend more than a year and a half imaging and mapping Bennu with its suite of remote sensing instruments (cameras, spectrometers, and a laser altimeter) – a plan based partially on lessons learned from JAXA’s first Hayabusa mission. All of this data will be used to select a single sample site with high scientific interest and low risk to the spacecraft. After carefully rehearsing, OSIRIS-REx will move in close, extend its sampling arm, and touch the asteroid’s surface for just five seconds, using nitrogen gas to stir up and collect at least 60 grams of loose material.

    By contrast, Hayabusa2 will not actually orbit Ryugu. In fact, the JAXA spacecraft will spend only about three months mapping before it begins the process of collecting three separate, but smaller, samples from different geographic locations on Ryugu. In addition to remote sensing, Hayabusa2 will deploy a lander (called MASCOT) and two rovers (called MINERVA-II 1 and 2) and will use a projectile and small explosive during one sampling process to collect material from beneath the asteroid’s surface.

    Despite the differences, there are shared challenges, and both teams’ learning curves will be steep. Until now, neither asteroid has been seen up close, and they will likely have some surprises in store. The predictions made from the ground about their shapes, sizes, and compositions could turn out to be wrong. Ryugu is expected to be about 80 percent larger than Bennu (approximately 900 meters in diameter versus 500 meters in diameter), but both asteroids are much smaller than the planets and most other bodies that have been orbited or landed on by spacecraft. The small size and microgravity environment makes navigation and sampling that much more challenging.

    Both spacecraft are venturing into far-away and unknown territory and attempting feats that are new to humanity. For the most part, they will be on their own on the asteroid frontier, but the value of running complementary missions cannot be overstated. The scientific and cultural returns from the two missions combined is far more than double the value of each individual mission. The ability to make comparisons during planning, operations, and after the samples are returned reduces risk and make both missions exponentially better.

    And, like any expedition, the chances for success increase when there are two friendly explorers forging similar paths and learning side-by-side.

  13. Asteroid Bennu, as Seen from Earth

    By Christine Hoekenga

    May 1, 2018 -

    When Asteroid Bennu was discovered on Sept. 11, 1999 by the Lincoln Near-Earth Asteroid Research project (LINEAR), it was called 1999 RQ36 — a provisional designation assigned by the Minor Planet Center. After follow-up observations determined the asteroid’s precise orbit, it was issued the official number 101955, indicating that it was the 101,955th asteroid to be officially recognized.

    Bennu’s orbit brings it relatively close to Earth every six years (in 2018, for example, the asteroid comes within 0.352 AU or about 33 million miles), giving astronomers better opportunities to image the asteroid with telescopes. Additional ground-based observations of Bennu have been made a number times since the asteroid’s discovery, including these images captured by telescopes based in Arizona:

    Image of Asteroid Bennu from Earth Sept. 2005

    Sept. 17, 2005 — Six years after its discovery, Bennu was was observed by researchers using the 1.5-meter Kuiper Telescope at the University of Arizona. Credit: Carl Hergenrother/University of Arizona

     

     

    Image of Asteroid Bennu from Earth Sept. 2011

    Sept. 26, 2011 — A few months after NASA selected the OSIRIS-REx mission for funding to visit and sample Bennu, researchers using the 1.5-meter Kuiper Telescope at the University of Arizona observed the asteroid. Credit: Carl Hergenrother/University of Arizona

     

     

    Image of Asteroid Bennu from Earth May 2012

    April 20, 2012 — Researchers using the 1.5-meter Kuiper Telescope at the University of Arizona observed Bennu again in the spring of 2012. Credit: Carl Hergenrother/University of Arizona

     

     

    Image of Asteroid Bennu from Earth May 2012

    May 15, 2012 — Bennu was observed using the 1.8-meter Vatican Advanced Technology Telescope (VATT) on Mount Graham in Arizona in May 2012. Credit: Carl Hergenrother/University of Arizona/Vatican Observatory

     

    Scientists have also used radar data from the Arecibo Observatory in Puerto Rico and NASA’s Deep Space Network antenna in California to estimate Bennu’s shape and size. However, to this day, no one has ever seen or imaged the asteroid up close.

    That’s where OSIRIS-REx comes in.

    Starting in the summer of 2018, the spacecraft will begin imaging asteroid Bennu with its PolyCam imager. The first images will be similar to ground-based observations: the asteroid will appear as a point of light in the distance. As the spacecraft approaches Bennu, the images will become clearer and more detailed, eventually zooming in on the asteroid’s precise shape, size and surface features.

    The mission team will use these detailed images, along with data collected by the spacecraft’s other instruments, to create maps of Bennu and, ultimately to select the location where OSIRIS-REx will collect a sample of its surface material for return to Earth in 2023.

     

  14. A long, long way from home…

    February 14, 2018 -

     

    The OSIRIS-REx spacecraft captured this image of the Earth and Moon system using its NavCam1 imager on January 17 from a distance of 39.5 million miles (63.6 million km). Earth is the largest, brightest spot in the center of the image, with the smaller, dimmer Moon appearing to the right. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

    As part of an engineering test, the OSIRIS-REx spacecraft captured this image of the Earth and Moon using its NavCam1 imager on January 17 from a distance of 39.5 million miles (63.6 million km).  When the camera acquired the image, the spacecraft was moving away from home at a speed of 19,000 miles per hour (8.5 kilometers per second).

    Earth is the largest, brightest spot in the center of the image, with the smaller, dimmer Moon appearing to the right. Several constellations are also visible in the surrounding space. The bright cluster of stars in the upper left corner is the Pleiades in the Taurus constellation. Hamal, the brightest star in Aries, is located in the upper right corner of the image.  The Earth-Moon system is centered in the middle of five stars comprising the head of Cetus the Whale.

    NavCam1, a grayscale imager, is part of the TAGCAMS (Touch-And-Go Camera System) navigation camera suite.  Malin Space Science Systems designed, built, and tested TAGCAMS; Lockheed Martin integrated TAGCAMS to the OSIRIS-REx spacecraft and operates TAGCAMS.

     

  15. NASA Selects Participating Scientists to Join OSIRIS-REx Mission

    December 8, 2017 -

    NASA selected 13 Participating Scientists from a range of disciplines to join the OSIRIS-REx mission. Credit: University of Arizona

    NASA has selected 13 participating scientists for the agency’s first asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer).

    The goal of the OSIRIS-REx Participating Scientist Program is to enhance the scientific return during the asteroid-operational phase of the mission by expanding participation in the mission through new investigations that broaden and/or complement existing investigations. The participating scientists will become science team members during their three-year tenure with the mission.

    OSIRIS-REx launched Sept. 8, 2016, from Cape Canaveral, Florida. It’s currently on a seven-year journey to rendezvous with, study, and return a sample of Bennu to Earth. This sample of a primitive asteroid will help scientists understand the formation of our solar system more than 4.5 billion years ago.

    The spacecraft will arrive at Bennu in December 2018, and begin surveying the surface.

    The newly selected participating scientists are:

    • Joshua Bandfield – Space Science Institute, Boulder, Colorado
    • Kerri Donaldson-Hanna – University of Oxford, England
    • Catherine Elder – Jet Propulsion Laboratory, Pasadena, California
    • Timothy Glotch – Stony Brook University (SUNY), New York
    • Romy Hanna – University of Texas, Austin
    • Christine Hartzell – University of Maryland, College Park
    • Jamie Molaro – Planetary Science Institute, Tucson, Arizona
    • Greg Neumann – NASA’s Goddard Space Flight Center, Greenbelt, Maryland
    • Maurizio Pajola – INAF/Astronomical Observatory of Padua, Italy
    • Stephen Schwartz – University of Arizona, Tucson
    • Matthew Siegler – Planetary Science Institute, Tucson, Arizona
    • David Trang – University of Hawaii, Manoa
    • Pasquale Tricarico – Planetary Science Institute, Tucson, Arizona

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for the Science Mission Directorate in Washington.

  16. OSIRIS-REx Images Earth and the Moon in Color

    October 10, 2017 -

     

    OSIRIS-REx MapCam Color Image Earth and Moon

    A color portrait of the Earth and the Moon taken Oct. 2, 2017 at a distance of approximately 3,180,000 miles (5,120,000 km) from Earth, using OSIRIS-REx’s MapCam imager. To produce the image, three of MapCam’s color filters (blue, green and red) were co-registered and stacked. Color correction and “stretching” (brightening) were performed on the Earth and Moon. Credit: NASA/Goddard/University of Arizona

     

    This color composite image of Earth and the Moon was taken Oct. 2, 2017 (ten days after OSIRIS-REx performed its Earth Gravity Assist maneuver), using MapCam, the mid-range scientific camera onboard the spacecraft. The distance to Earth was approximately 3,180,000 miles (5,120,000 km)—or about 13 times the distance between the Earth and Moon.

    MapCam, part of the OSIRIS-REx Camera Suite (OCAMS) operated by the University of Arizona, has four color filters. To produce this image, three of them (b, v and w) were treated as a blue-green-red triplet, co-registered and stacked. The Earth and Moon were each color-corrected, and the Moon was “stretched” (brightened) to make it more easily visible.

     

    Graphic - MapCam Imaging Earth and Moon After EGA

    Credit: NASA/Goddard/University of Arizona

    To capture the image, OSIRIS-REx pointed its instrument deck back toward Earth from a distance of approximately 3,180,000 miles (5,120,000 km). At that range, the Moon—which was 3,370,000 miles (5,420,000 km) away from the spacecraft—appeared just inside MapCam’s field of view, allowing both planetary bodies to be captured in the same frame.

  17. OSIRIS-REx Images the Moon

    October 3, 2017 -

    On Sept. 25, 2017, the OSIRIS-REx spacecraft obtained the data used to produce this image of the Moon with its high-resolution PolyCam imager. Credit: NASA/Goddard/University of Arizona

    Three days after its Earth flyby, the OSIRIS-REx spacecraft examined the Moon using its high-resolution PolyCam imager. This image was produced using data taken Sept. 25, when the spacecraft was approximately 746,000 miles (1.2 million km) from the Moon, moving away at approximately 14,000 miles per hour (22,530 km per hour).

    Familiar lunar features such as the Mare Tranquillitatis (Sea of Tranquility) and Mare Crisium (Sea of Crises) are visible on the left. Also visible are features of the far side of the Moon, such as the mare plain surrounding Tsiolkovsky Crater (bottom right) and the bright ray systems surrounding the Giordano Bruno and Necho Craters (center). To produce this image, the OSIRIS-REx team registered and combined nine one-megapixel PolyCam images taken in quick succession using a technique called super-resolution imaging.

    PolyCam is part of the OSIRIS-REx Camera Suite (OCAMS) operated by the University of Arizona.

  18. NASA’s OSIRIS-REx Snaps Pictures of Earth and the Moon

    September 28, 2017 -

    The first image taken by NASA’s OSIRIS-REx spacecraft after completion of its Earth Gravity Assist maneuver on Sept. 22, 2017. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

    The first image taken by NASA’s OSIRIS-REx spacecraft after completion of its Earth Gravity Assist maneuver on Sept. 22, 2017, cropped to show in greater detail the spacecraft’s view of Earth from 69,000 miles (110,000 kilometers). The image has been rotated so that Earth’s north pole is located at the top, and the Baja Peninsula is visible above and to the right of center. Cloud cover and the Pacific Ocean dominate most of the image, but Hurricane Maria and the remnants of Hurricane Jose can be seen in the far upper-right portion of the image, off the east coast of the United States. This image was captured by NavCam 1, a black-and-white imager that is one of three cameras comprising TAGCAMS (the Touch-and-Go Camera System), which is part of OSIRIS-REx’s guidance, navigation, and control system. NavCam images will track starfields and landmarks on Bennu to determine the spacecraft position during mission operations. TAGCAMS was designed, built and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-REx spacecraft and operates TAGCAMS. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

     

    This black-and-white image of the Earth-Moon system was captured on Sept. 25, 2017 by NavCam 1. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

    This black-and-white image of the Earth-Moon system was captured on Sept. 25, 2017 by NavCam 1, one of three cameras that comprise TAGCAMS (the Touch-and-Go Camera System) on NASA’s OSIRIS-REx spacecraft. At the time this image was taken, the spacecraft was retreating from Earth after performing an Earth Gravity Assist maneuver on Sept. 22. Earth and the Moon are shown 249,000 miles (401,200 kilometers) apart, and the spacecraft is 804,000 miles (1,297,000 kilometers) from Earth and 735,000 miles (1,185,000 kilometers) from the Moon.  TAGCAMS was designed, built and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-REx spacecraft and operates TAGCAMS. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

  19. OSIRIS-REx Views the Earth During Flyby

    September 26, 2017 -

    A color composite image of Earth taken on Sept. 22 by the MapCam camera on NASA’s OSIRIS-REx spacecraft. Credit: NASA/Goddard/University of Arizona

    A color composite image of Earth taken on Sept. 22 by the MapCam camera on NASA’s OSIRIS-REx spacecraft. This image was taken just hours after the spacecraft completed its Earth Gravity Assist at a range of approximately 106,000 miles (170,000 kilometers). MapCam is part of the OSIRIS-REx Camera Suite (OCAMS) operated by the University of Arizona. Visible in this image are the Pacific Ocean and several familiar landmasses, including Australia in the lower left, and Baja California and the southwestern United States in the upper right. The dark vertical streaks at the top of the image are caused by short exposure times (less than three milliseconds). Short exposure times are required for imaging an object as bright as Earth, but are not anticipated for an object as dark as the asteroid Bennu, which the camera was designed to image.

     

    OVIRS captured this visible and infrared spectral curve, which shows the amount of sunlight reflected from the Earth, after the spacecraft’s Earth Gravity Assist on Sept. 22, 2017. Credit: NASA/Goddard/University of Arizona

    OVIRS, the OSIRIS-REx Visible and Infrared Spectrometer, captured this visible and infrared spectral curve, which shows the amount of sunlight reflected from the Earth, hours after the spacecraft’s closest approach during Earth Gravity Assist on Sept. 22 2017. The features in the curve are caused by solar absorption due to different substances (water vapor, carbon dioxide, and oxygen). The smooth red curve is the spectrum of the sun and shows what would be reflected if there these substances were not present in the atmosphere. OVIRS was built and is operated by NASA’s Goddard Space Flight Center in Greenbelt, Md.  The inset shows an image of Earth captured by OCAMS on the same date showing the approximate location of the “spot” (400 kilometers in diameter) on the Earth that was scanned by the OVIRS instrument to produce this spectral curve.

     

     

     

     

     

    OTES captured these infrared spectral curves during Earth Gravity Assist on Sept. 22 2017, hours after the spacecraft’s closest approach. Credit: NASA/Goddard/University of Arizona/Arizona State University

    OTES, the OSIRIS-REx Thermal Emission Spectrometer, captured these infrared spectral curves during Earth Gravity Assist on Sept. 22 2017, hours after the spacecraft’s closest approach. The peaks and valleys in the curves are known as absorption features and show differences in absorption of the sun’s energy due to different substances (water vapor, carbon dioxide, methane and ozone) in Earth’s atmosphere. The curves also provide temperature information for different heights in the atmosphere. The smooth red and blue curves show the temperatures of the ocean surface and the stratosphere without the effects of the absorption features. OTES was built and is operated by Arizona State University in Tempe, Ariz.  The inset shows an image of Earth captured by OCAMS on the same date shows the approximate locations and sizes of the “spots” (each 800 kilometers in diameter) on the Earth that were scanned by the OTES instrument to produce these spectral curves.

  20. NASA’S OSIRIS-REx Spacecraft Slingshots Past Earth

    September 22, 2017 -

    NASA’s asteroid sample return spacecraft successfully used Earth’s gravity on Friday to slingshot itself on a path toward the asteroid Bennu, for a rendezvous next August.

    At 12:52 p.m. EDT on Sept. 22, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) spacecraft came within 10,711 miles (17,237 km) of Antarctica, just south of Cape Horn, Chile, before following a route north over the Pacific Ocean.

    OSIRIS-REx launched from Cape Canaveral Air Force Station in Florida on Sept. 8, 2016, on an Atlas V 411 rocket. Although the rocket provided the spacecraft with all the momentum required to propel it forward to Bennu, OSIRIS-REx needed an extra boost from the Earth’s gravity to change its orbital plane. Bennu’s orbit around the Sun is tilted six degrees from Earth’s orbit, and this maneuver changed the spacecraft’s direction to put it on the path toward Bennu.

    As a result of the flyby, the velocity change to the spacecraft was 8,451 miles per hour (3.778 kilometers per second).

    “The encounter with Earth is fundamental to our rendezvous with Bennu,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The total velocity change from Earth’s gravity far exceeds the total fuel load of the OSIRIS-REx propulsion system, so we are really leveraging our Earth flyby to make a massive change to the OSIRIS-REx trajectory, specifically changing the tilt of the orbit to match Bennu.”

    The mission team also is using OSIRIS-REx’s Earth flyby as an opportunity to test and calibrate the spacecraft’s instrument suite. Approximately four hours after the point of closest approach, and on three subsequent days over the next two weeks, the spacecraft’s instruments will be turned on to scan Earth and the Moon. These data will be used to calibrate the spacecraft’s science instruments in preparation for OSIRIS-REx’s arrival at Bennu in late 2018.

    “The opportunity to collect science data over the next two weeks provides the OSIRIS-REx mission team with an excellent opportunity to practice for operations at Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “During the Earth flyby, the science and operations teams are co-located, performing daily activities together as they will during the asteroid encounter.”

    The OSIRIS-REx spacecraft is currently on a seven-year journey to rendezvous with, study, and return a sample of Bennu to Earth. This sample of a primitive asteroid will help scientists understand the formation of our solar system more than 4.5 billion years ago.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for the Science Mission Directorate in Washington.

  21. Large Binocular Telescope Snags First Glimpse of NASA’s OSIRIS-REx Spacecraft Since Launch

    September 8, 2017 -

    This set of magnified, cropped images shows NASA’s OSIRIS-REx spacecraft (highlighted in red) as it approaches Earth for its Sept. 22 Earth Gravity Assist. To improve visibility, the images have been inverted so that black and white are reversed. The images were taken Sept. 2, by the Large Binocular Telescope Observatory located on Mount Graham in Arizona. This is the first Earth-based view of the spacecraft since its launch on Sept. 8, 2016.

    On Sept. 2, 2017, the Large Binocular Telescope on Mt. Graham, Ariz., imaged the OSIRIS-REx spacecraft as the spacecraft approached Earth. This is the first Earth-based view of the spacecraft since its launch on Sept. 8, 2016. Credit: Large Binocular Telescope Observatory

    OSIRIS-REx, which was approximately 7 million miles (12 million kilometers) away when the images were taken, appears at approximately 25th magnitude.

    The Large Binocular Telescope is a pair of 8.4-meter mirrors mounted side by side on the same mount, that can work together to provide resolution equivalent to a 22.7-meter telescope. The telescope typically conducts imaging of more distant objects but took this opportunity to look for OSIRIS-REx with a pair of wide-field cameras (one per mirror) as the spacecraft approaches Earth for its gravity assist. This encounter will change the spacecraft’s trajectory and set it on course to rendezvous with asteroid Bennu, where it will collect a sample of surface material and return it to Earth for study in 2023. The Large Binocular Telescope Observatory is headquartered on the Tucson campus of the University of Arizona.

    The OSIRIS-REx mission team is collecting other images of the spacecraft taken by observatories and other ground-based telescopes around the world during this period – approximately Sept. 10-23, depending on location and local conditions. Individuals and groups may submit images of the spacecraft via the mission’s website, where instructions to locate the spacecraft in the sky are also available.

    For more information on the OSIRIS-REx mission, visit:

    www.nasa.gov/osirisrex  and www.asteroidmission.org

    For more information on the Large Binocular Telescope, visit:

    www.lbto.org

  22. Spot the Spacecraft

    September 6, 2017 -

    On Sept. 22, NASA’s OSIRIS-REx spacecraft will make a close approach to Earth, using the planet’s gravity to slingshot itself toward the asteroid Bennu. Over the course of several days, observatories and amateur astronomers with specialized equipment will be able to see OSIRIS-REx as the spacecraft approaches and retreats from its closest position over Earth, approximately 11,000 miles (17,000 km) above the planet’s surface.

    The mission will collect images of OSIRIS-REx taken by observatories and other ground-based telescopes around the world during this period – approximately Sept. 10-23, depending on location and local conditions. Observers from the OSIRIS-REx Target Asteroids! citizen science program, who regularly volunteer their time to help scientists study near-Earth asteroids, will be among those who train their telescopes on the spacecraft’s path.

    “The opportunity to capture images of the OSIRIS-REx spacecraft as it approaches Earth provides a unique challenge for observers to hone their skills during this historic flyby,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “As the spacecraft approaches Earth for its own imaging campaign, ground-based observers will also be looking up and taking photos from the opposite perspective.”

    Individuals and groups may submit images of the spacecraft via the mission’s website, where instructions to locate the spacecraft in the sky are also available.

    “The team is eager and ready to execute the Earth Gravity Assist,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greeenbelt, Maryland. “Not only will it be a significant change in trajectory putting OSIRIS-REx on track for rendezvous with Bennu, it also represents a unique opportunity for the OSIRIS-REx instruments to observe our home planet. It is fantastic that ground based observers are also taking the opportunity to image OSIRIS-REx.”

    The images collected during the Earth gravity assist represent the last opportunity for Earth-based observers to see the spacecraft — until it returns to Earth in 2023 carrying a sample from asteroid Bennu.

    The Japan Aerospace Exploration Agency (JAXA), the home institution of several OSIRIS-REx science team members, will also work with the Japan Public Observatory Society and the Planetary Society of Japan to collect imagery from vantage points in Japan.

    Shortly before OSIRIS-REx reaches its closest distance from Earth, the spacecraft will fly over the eastern half of Australia, giving observers there some of the best opportunities to see and photograph the spacecraft. The Desert Fireball Network — an organization based at Curtin University, Perth, that studies meteorites, fireballs and their pre-Earth orbits—will deploy observers to locations around Australia to track OSIRIS-REx across the sky.

    Members of the public without telescopes can still celebrate the Earth Gravity Assist by joining the “Wave to OSIRIS-REx” social media campaign. Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).

    Participants may begin taking and sharing photos at any time — or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52 p.m. EDT on Friday, Sept. 22.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  23. NASA’s Asteroid-Bound Spacecraft to Slingshot Past Earth

    August 31, 2017 -

    NASA’s asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), will pass about 11,000 miles (17,000 kilometers) above Earth just before 12:52 p.m. EDT on Friday, Sept. 22. Using Earth as a slingshot, the spacecraft will receive an assist to complete its journey to the asteroid Bennu.

    This artist’s concept shows the OSIRIS-REx spacecraft passing by Earth.
    Credits: NASA’s Goddard Space Flight Center/University of Arizona

    OSIRIS-REx is undertaking a challenging mission to visit the near-Earth asteroid, survey the surface, collect samples and deliver them safely back to Earth. This is the first NASA mission to attempt such an undertaking. The spacecraft is halfway through its two-year outbound journey, and now OSIRIS-REx needs an extra boost to successfully rendezvous with Bennu.

    Bennu’s orbit around the Sun is tilted six degrees in comparison to Earth’s. The gravity assist will change OSIRIS-REx’s trajectory to put the spacecraft on a course to match the asteroid’s path and speed.

    “The Earth Gravity Assist is a clever way to move the spacecraft onto Bennu’s orbital plane using Earth’s own gravity instead of expending fuel,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.

    The team has already made multiple adjustments to the spacecraft’s path since launch on Sept. 8, 2016. The largest was a deep space maneuver on Dec. 28, 2016, that changed the speed and path of the spacecraft to target Earth for the flyby. There have also been three trajectory correction maneuvers – one on Oct. 7, 2016, one on Jan. 18, 2017, and another on Aug. 23, 2017 (30 days before the gravity assist) – that further refined the spacecraft’s trajectory in preparation for the flyby.

    The navigation team comprises employees from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and KinetX Aerospace. KinetX Aerospace navigation team members plan and carry out all OSIRIS-REx maneuvers with the Lockheed Martin spacecraft operations team at the Lockheed Martin Waterton Campus in Littleton, Colorado. To properly target the Earth Gravity Assist, the navigation team calculates any required amount of change in the spacecraft’s course and speed. This information is then translated by the operations team into commands that are uploaded to the spacecraft and executed by firing the spacecraft’s rocket engines.

    After traveling almost 600 million miles, OSIRIS-REx will approach Earth at a speed of about 19,000 mph. The spacecraft will fly over Australia before reaching its closest point to Earth over Antarctica, just south of Cape Horn, Chile.

    “For about an hour, NASA will be out of contact with the spacecraft as it passes over Antarctica,” said Mike Moreau, the flight dynamics system lead at Goddard. “OSIRIS-REx uses the Deep Space Network to communicate with Earth, and the spacecraft will be too low relative to the southern horizon to be in view with either the Deep Space tracking station at Canberra, Australia, or Goldstone, California.”

    NASA will regain communication with OSIRIS-REx at 1:40 p.m. EDT, roughly 50 minutes after closest approach.

    At 4:52 p.m. EDT, four hours after closest approach, OSIRIS-REx will begin science observations of Earth and the Moon to calibrate its instruments.

    During the gravity assist, OSIRIS-REx will pass through a region of space that is inhabited by Earth-orbiting satellites, and NASA has taken precautions to ensure the safety of the spacecraft as it flies through this area. The mission’s flight dynamics team designed a small maneuver that, if necessary, could be executed a day before closest approach to change the spacecraft’s trajectory slightly to avoid a potential collision between OSIRIS-REx and a satellite.

    “A few weeks after the flyby we will assess the outgoing trajectory on its way to Bennu,” said Dan Wibben, the maneuver design and trajectory analysis lead from KinetX Aerospace. “There is a maneuver planned in case we need to adjust the orbit just a little bit to push the spacecraft back on track.”

    In late June of 2018, the team will perform another deep space maneuver to further target the rendezvous with Bennu. Then beginning in October 2018, a series of asteroid approach maneuvers will be executed to slow the spacecraft with respect to the asteroid.

    Once OSIRIS-REx rendezvous with Bennu in late 2018, the spacecraft will begin surveying the surface.

    “The asteroid’s small size and low gravity makes OSIRIS-REx the most challenging mission that I have worked on,” said Peter Antreasian, the navigation team chief from KinetX Aerospace. “At roughly 500 meters in diameter, Bennu will be the smallest object that NASA has orbited.”

    While the engineering team is busy carrying out the Earth Gravity Assist, the mission invites members of the public to mark the occasion by participating in the Wave to OSIRIS-REx social media campaign. Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).

    Participants may begin taking and sharing photos at any time—or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52p.m. EDT on Friday, Sept. 22.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  24. NASA’s Asteroid Sample Return Mission Successfully Adjusts Course

    August 25, 2017 -

    NASA’s OSIRIS-REx spacecraft fired its thrusters to position itself on the correct course for its upcoming Earth flyby. The spacecraft, which is on a two-year outbound journey to asteroid Bennu, successfully performed a precision course adjustment on Wednesday to prepare for the gravity slingshot on Sept. 22.

    This trajectory correction maneuver was the first to use the spacecraft’s Attitude Control System, or ACS, thrusters in a turn-burn-turn sequence. In this type of sequence, OSIRIS-REx’s momentum wheels turn the spacecraft to point the ACS thrusters toward the desired direction for the burn, and the thrusters fire. After the burn, the momentum wheels turn the spacecraft back to its previous orientation. The total thrust is monitored by an on-board accelerometer that will stop the maneuver once the desired thrust is achieved.

    High-precision changes in velocity, or speed and direction, will be critical when the OSIRIS-REx spacecraft operates near Bennu. Because Bennu is so small, it has only a weak gravity field. Therefore, it will only require tiny changes in velocity to do many of the maneuvers that are planned to explore and map the asteroid.

    The Aug. 23 maneuver began at 1 p.m. EDT and lasted for approximately one minute and 17 seconds. Preliminary tracking data indicate that the maneuver was successful, changing the velocity of the spacecraft by 1.07 miles per hour (47.9 centimeters per second) and using approximately 16 ounces (0.46 kilogram) of fuel.

    OSIRIS-REx will fly by Earth on Sept. 22 to use our planet’s gravity to propel the spacecraft onto Bennu’s orbital plane. As of Friday, Aug. 25, the spacecraft is about 10.3 million miles (16.6 million kilometers) from Earth.

    The mission team has another minor Earth-targeting maneuver tentatively planned for Sept. 12. Over the next few weeks, the navigation team will process daily spacecraft tracking data from Wednesday’s maneuver to determine whether the additional maneuver is necessary before the Earth gravity assist.

  25. OSIRIS-REx Experts Featured in Asteroid Day Celebration

    June 13, 2017 -

    Join the OSIRIS-REx mission and the University of Arizona for a special Asteroid Day presentation on Tuesday, June 27, featuring six experts exploring the most up-to-date asteroid science. Moderated by television host Geoff Notkin from the show “Meteorite Men,” the event will bring together researchers from the University of Arizona who work at the forefront of asteroid science. Media are invited to attend, and opportunities for interviews with the experts will be provided. The presentation is free and open to the public. Seating is limited and admittance is first-come, first-served.

    What: Special presentation and programming in recognition of Asteroid Day

    When: June 27, 6 p.m. and weekend of June 30 – July 2, 2017

    Where: Flandrau Science Center & Planetarium, 1601 E University Blvd., Tucson, AZ 85719 and online

    Expert Presenters:

    • Dante Lauretta, principal investigator for NASA’s OSIRIS-REx mission and professor at the UA Lunar and Planetary Laboratory
    • Eric Christensen, director of the Catalina Sky Survey for Near-Earth Objects and associate staff scientist at the UA Lunar and Planetary Laboratory
    • Heather Enos, deputy principal investigator for NASA’s OSIRIS-REx mission
    • Vishnu Reddy, assistant professor at the UA Lunar and Planetary Laboratory
    • Geoff Notkin, Board of Governors, National Space Society
    • Dani DellaGiustina, lead image processing scientist for NASA’s OSIRIS-REx mission

    Can’t join us in person? The presentations will be recorded for broadcast on June 29 and 30 as part of a special 24-hour Asteroid Day Live broadcast organized by the nation of Luxembourg.

    On Asteroid Day and through the weekend that follows (June 30 – July 2), Flandrau Science Center & Planetarium will celebrate Asteroid Day/Weekend with special activities related to asteroids and the OSIRIS-REx mission, asteroid planetarium shows and asteroid exhibits for the public.

     

    To raise awareness of asteroids and the important roles they have played in the evolution of the solar system and throughout Earth’s history, June 30 is designated annually as Asteroid Day. The date commemorates Earth’s largest asteroid impact in recorded history, the Siberia Tunguska event, which leveled trees across 770 square miles, more than three times the area of Tucson, in 1908.

    Currently, the UA leads the OSIRIS-REx mission, an $800 million NASA mission that will bring back a sample from the asteroid Bennu. The UA also has the most internationally active program to identify and track Near-Earth Objects (NEOs). More than half of all known near-Earth asteroids and comets have been discovered by the UA.

  26. OSIRIS-REx Asteroid Search Tests Instruments, Science Team

    March 24, 2017 -

    During an almost two-week search, NASA’s OSIRIS-REx mission team activated the spacecraft’s MapCam imager and scanned part of the surrounding space for elusive Earth-Trojan asteroids—objects that scientists believe may exist in one of the stable regions that co-orbits the sun with the Earth. Although no Earth-Trojans were discovered, the spacecraft’s camera operated flawlessly and demonstrated that it could image objects two magnitudes dimmer than originally expected.

    The path of the Main Belt asteroid 12 Victoria, as imaged by NASA’s OSIRIS-REx spacecraft on Feb. 11 during the mission’s Earth-Trojan Asteroid Search. This gif is made of a series of five images taken by the spacecraft’s MapCam camera that were then cropped and centered on Victoria. The images were taken about 51 minutes apart and each were exposed for ten seconds. Credits: NASA/Goddard/University of Arizona

    The spacecraft, currently on its outbound journey to the asteroid Bennu, flew through the center of Earth’s fourth Lagrangian area—a stable region 60 degrees in front of the Earth in its orbit where scientists believe asteroids may be trapped, such as asteroid 2010 TK7 discovered by NASA’s Wide-field Infrared Survey Explorer (WISE) satellite in 2010. Though no new asteroids were discovered in the region that was scanned, the spacecraft’s cameras MapCam and PolyCam successfully acquired and imaged Jupiter and several of its moons, as well as Main Belt asteroids.

    “The Earth-Trojan Asteroid Search was a significant success for the OSIRIS-REx mission,” said OSIRIS-REx principal investigator Dante Lauretta of the University of Arizona, Tucson. “In this first practical exercise of the mission’s science operations, the mission team learned so much about this spacecraft’s capabilities and flight operations that we are now ahead of the game for when we get to Bennu.”

    The Earth Trojan survey was designed primarily as an exercise for the mission team to rehearse the hazard search the spacecraft will perform as it approaches its target asteroid Bennu. This search will allow the mission team to avoid any natural satellites that may exist around the asteroid as the spacecraft prepares to collect a sample to return to Earth in 2023 for scientific study.

    The spacecraft’s MapCam imager, in particular, performed much better than expected during the exercise. Based on the camera’s design specifications, the team anticipated detecting four Main Belt asteroids. In practice, however, the camera was able to detect moving asteroids two magnitudes fainter than expected and imaged a total of 17 Main Belt asteroids. This indicates that the mission will be able to detect possible hazards around Bennu earlier and from a much greater distance that originally planned, further reducing mission risk.

    Scientists are still analyzing the implications of the search’s results for the potential population of Earth-Trojan asteroids and will publish conclusions after a thorough study of mission data.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  27. NASA’s OSIRIS-REx Takes Closer Image Of Jupiter

    February 15, 2017 -

    During Earth-Trojan asteroid search operations, the PolyCam imager aboard NASA’s OSIRIS-REx spacecraft captured this image of Jupiter (center) and three of its moons, Callisto (left), Io, and Ganymede.

    On Feb. 12, 2017, OSIRIS-REx’s PolyCam imager captured this image of Jupiter (center) and three of its moons, Callisto (left), Io, and Ganymede. The image was taken when the spacecraft was 76 million miles (122 million kilometers) from Earth and 418 million miles (673 million kilometers) from Jupiter. (NASA/Goddard/University of Arizona)

    The image, which shows the bands of Jupiter, was taken at 3:34 a.m. EST, on Feb. 12, when the spacecraft was 76 million miles (122 million kilometers) from Earth and 418 million miles (673 million kilometers) from Jupiter. PolyCam is OSIRIS-REx’s longest range camera, capable of capturing images of the asteroid Bennu from a distance of two million kilometers.

    This image was produced by taking two copies of the same image, adjusting the brightness of Jupiter separately from the significantly dimmer moons, and compositing them back together so that all four objects are visible in the same frame.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  28. NASA’s OSIRIS-REx Takes Its First Image of Jupiter

    February 14, 2017 -

    This magnified, cropped image showing Jupiter and three of its moons was taken by NASA’s OSIRIS-REx spacecraft’s MapCam instrument during optical navigation testing for the mission’s Earth-Trojan Asteroid Search.

    A magnified, cropped image showing Jupiter and three of its moons taken by NASA’s OSIRIS-REx spacecraft’s MapCam instrument during optical navigation testing for the mission’s Earth-Trojan Asteroid Search. Credit: NASA/Goddard/University of Arizona

    The image shows Jupiter in the center, the moon Callisto to the left and the moons Io and Europa to the right. Ganymede, the fourth Galilean satellite, is also present in the image, but is not visible as it is crossing in front of the planet.

    The image was taken at 3:38 a.m. EST on Feb. 9, 2017, when the spacecraft was 75 million miles (120 million kilometers) from Earth and 419 million miles (675 million kilometers) from Jupiter. With an exposure time of two seconds, the image renders Jupiter overexposed, but allows for enhanced detection of stars in the background.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  29. NASA’s OSIRIS-REx Begins Earth-Trojan Asteroid Search

    February 9, 2017 -

    A NASA spacecraft begins its search Thursday for an enigmatic class of near-Earth objects known as Earth-Trojan asteroids. OSIRIS-REx, currently on a two-year outbound journey to the asteroid Bennu, will spend almost two weeks searching for evidence of these small bodies.

    An artist’s rendering of the OSIRIS-REx spacecraft’s survey pattern during its Earth-Trojan Asteroid Search (not to scale). The search occurs Feb. 9-20, 2017, as the spacecraft transits the Earth’s L4 Lagrangian region. Credit: University of Arizona

    Trojan asteroids are trapped in stable gravity wells, called Lagrange points, which precede or follow a planet. OSIRIS-REx is currently traveling through Earth’s fourth Lagrange point, which is located 60 degrees ahead in Earth’s orbit around the sun, about 90 million miles (150 million kilometers) from our planet. The mission team will use this opportunity to take multiple images of the area with the spacecraft’s MapCam camera in the hope of identifying Earth-Trojan asteroids in the region.

    Although scientists have discovered thousands of Trojan asteroids accompanying other planets, only one Earth-Trojan has been identified to date, asteroid 2010 TK7. Scientists predict that there should be more Trojans sharing Earth’s orbit, but they are difficult to detect from Earth as they appear near the sun on the Earth’s horizon.

    “Because the Earth’s fourth Lagrange point is relatively stable, it is possible that remnants of the material that built Earth are trapped within it,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “So this search gives us a unique opportunity to explore the primordial building blocks of Earth.”

    The search commences today and continues through Feb. 20. On each observation day, the spacecraft’s MapCam camera will take 135 survey images that will be processed and examined by the mission’s imaging scientists at the University of Arizona, Tucson. The study plan also includes opportunities for MapCam to image Jupiter, several galaxies, and the main belt asteroids 55 Pandora, 47 Aglaja and 12 Victoria.

    Whether or not the team discovers any new asteroids, the search is a beneficial exercise. The operations involved in searching for Earth-Trojan asteroids closely resemble those required to search for natural satellites and other potential hazards around Bennu when the spacecraft approaches its target in 2018. Being able to practice these mission-critical operations in advance will help the OSIRIS-REx team reduce mission risk once the spacecraft arrives at Bennu.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  30. PI BLOG: Searching for the Earth-Trojan Asteroids

    January 19, 2017 -

    The OSIRIS-REx mission will take advantage of our fortuitous trajectory to search for an elusive class of asteroids that may be the remnants of the building blocks of the Earth. Since our launch on September 8, 2016, spacecraft operations for OSIRIS-REx have gone well.

  31. Successful Deep Space Maneuver for NASA’s OSIRIS-REx Spacecraft

    January 17, 2017 -

    New tracking data confirms that NASA’s OSIRIS-REx spacecraft aced its first Deep Space Maneuver (DSM-1) on Dec. 28, 2016. The engine burn sets up the spacecraft for an Earth gravity assist this fall as it continues its two-year journey to the asteroid Bennu.

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its main engine. Credit: University of Arizona

    The large maneuver was the first using OSIRIS-REx’s main engines and resulted in a 964 miles per hour (431 meters per second) change in the vehicle’s velocity utilizing 780 pounds (354 kilograms) of fuel.

    Tracking data from the Deep Space Network (DSN) confirmed the successful maneuver, and subsequent downlink of high-rate telemetry from the spacecraft shows that all subsystems performed as expected.

    “DSM-1 was our first major trajectory change and first use of the main engines, so it’s good to have that under our belts and be on a safe trajectory to Bennu,” said Arlin Bartels, deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    DSM-1 represents the first major, post-launch milestone for OSIRIS-REx. The significant change in trajectory from DSM-1 was necessary to put OSIRIS-REx on course for an encounter with Earth in September of this year.

    A smaller trajectory correction maneuver will be executed on Wednesday, Jan. 18 to refine the course for the Earth flyby, during which Earth’s gravity will bend the OSIRIS-REx trajectory and slinging it toward a rendezvous with the asteroid Bennu in the fall of 2018.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing spacecraft flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  32. OSIRIS-REx Executes First Deep Space Maneuver

    December 28, 2016 -

    NASA’s OSIRIS-REx spacecraft executed its first Deep Space Maneuver today, putting it on course for an Earth flyby in September 2017. The team will continue to examine telemetry and tracking data as it becomes available at the current low data rate and will have more information in January.

    Artist’s conception of NASA’s OSIRIS-REx spacecraft during a burn of its main engine. Credit: University of Arizona

  33. NASA Mission to Search for Rare Asteroids

    December 12, 2016 -

    NASA’s first mission to return a sample of an asteroid to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On Feb. 9-20, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) spacecraft will activate its onboard camera suite and commence a search for elusive “Trojan” asteroids.

    In February 2017, the OSIRIS-REx spacecraft will undertake a search for Earth-Trojan asteroids while on its outbound journey to the asteroid Bennu. Earth Trojans are asteroids that share an orbit with Earth while remaining near a stable point 60 degrees in front of or behind the planet. Credit: University of Arizona/Heather Roper

    In February 2017, the OSIRIS-REx spacecraft will undertake a search for Earth-Trojan asteroids while on its outbound journey to the asteroid Bennu. Earth Trojans are asteroids that share an orbit with Earth while remaining near a stable point 60 degrees in front of or behind the planet. Credit: University of Arizona/Heather Roper

    Trojans are asteroids that are constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.

    There are six planets in our solar system with known Trojan asteroids—Jupiter, Neptune, Mars, Venus, Uranus and, yes, even Earth. The Earth Trojan is elusive; to date, scientists have only discovered one Earth trojan asteroid — 2010 TK7  — found by NASA’s NEOWISE project in 2010. Yet there are more than 6,000 known Trojans that are co-orbiting the sun with the gas giant Jupiter.

    Scientists predict that there should be more Trojans sharing Earth’s orbit, but these asteroids are difficult to detect from Earth because they appear close to the sun from Earth’s point of view. In mid-February 2017, however, the OSIRIS-REx spacecraft will be positioned in an ideal spot to undertake a survey.

    Over 12 days, the OSIRIS-REx Earth-Trojan asteroid search will employ the spacecraft’s MapCam imager to methodically scan the space where Earth Trojans are expected to exist.  Many of these observations will closely resemble MapCam’s planned activities during its upcoming search for satellites of asteroid Bennu, so the Trojan asteroid search serves as an early rehearsal for the mission’s primary science operations.

    “The Earth-Trojan asteroid search provides a substantial advantage to the OSIRIS-REx mission,” said OSIRIS-REx Principal Investigator Dante Lauretta of the University of Arizona, Tucson. “Not only do we have the opportunity to discover new members of an asteroid class, but more importantly, we are practicing critical mission operations in advance of our arrival at Bennu, which ultimately reduces mission risk.”

    The OSIRIS-REx spacecraft is currently on a seven-year journey to rendezvous with, study, and bring a sample of Bennu to Earth. This sample of a primitive asteroid will help scientists understand the formation of our solar system more than 4.5 billion years ago.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  34. PI BLOG: OSIRIS-REx Spacecraft Check Out and Early Cruise Phase Activities

    November 14, 2016 -

    It has been awhile since I posted anything to this site. The launch of OSIRIS-REx was such an amazing, emotional experience; it took me about a month to come back down to Earth (pun intended). I have now settled into a normal work routine in Tucson and the team has been busy operating the spacecraft and planning for the encounter with Bennu in 2018. We are now in the Outbound Cruise phase of the mission.

  35. NASA Tests Thrusters on Journey to Asteroid Bennu

    October 7, 2016 -
    Artist's conception of the OSIRIS-REx spacecraft in cruise configuration. Credit: University of Arizona/Heather Roper

    Artist’s conception of the OSIRIS-REx spacecraft in cruise configuration. Credit: University of Arizona/Heather Roper

    NASA’s OSIRIS-REx spacecraft fired its Trajectory Correction Maneuver (TCM) thrusters for the first time Friday in order to slightly adjust its trajectory on the outbound journey from Earth to the asteroid Bennu. The spacecraft’s planned first Trajectory Correction Maneuver (TCM-1) began at 1 p.m. EDT and lasted for approximately 12 seconds. The maneuver changed the velocity of the spacecraft by 1.1 mile per hour (50 centimeters per second) and used approximately 18 ounces (.5 kilogram) of fuel.  The spacecraft is currently about 9 million miles (14.5 million kilometers) from Earth.

    TCM-1 was originally included in the spacecraft’s flight plan to fine-tune its trajectory if needed after the mission’s Sept. 8 launch. The ULA Atlas V’s launch performance was so accurate, however, that the spacecraft’s orbit had no practical need for correction. Instead, the OSIRIS-REx mission team used the Oct. 7 maneuver to test the TCM thrusters and as practice to prepare for a much larger propulsive maneuver scheduled in December.

    The mission had allocated approximately 388 ounces (11 kilograms) of propellant for TCM-1 to create a velocity change of up to 26 miles per hour (11.6 meters per second), had it been necessary. The unused propellant from this event provides more fuel margin for the spacecraft’s asteroid proximity operations once OSIRIS-REx arrives at Bennu.

    To track today’s maneuver, the OSIRIS-REx mission’s navigation team monitored the Doppler shift in radio signals between the spacecraft and the Deep Space Network antenna at the Goldstone Observatory in California. After 44 seconds—the current one-way light time delay between the spacecraft and Earth—the team received the first maneuver data from the spacecraft. Over the next week, the navigation team will process daily spacecraft tracking data to determine the precise effect of the burn.

    The OSIRIS-REx spacecraft has four different kinds of thrusters providing considerable redundancy in its ability to maneuver on its way to the surface of Bennu and back. OSIRIS-REx began using its Attitude Control System (ACS) thrusters shortly after launch to keep the spacecraft oriented, so that its solar arrays point toward the sun and its communication antennas point toward Earth. Today was the first use of its larger Trajectory Correction Maneuver (TCM) thrusters. In December OSIRIS-REx will use its largest thrusters, the Main Engine (ME) thrusters, to target the spacecraft for its Earth Gravity Assist scheduled for Sept. 22, 2017. Its smallest thrusters, the Low Thrust Reaction Engine Assembly (LTR) thrusters, will be used for the delicate maneuvers close to the surface of the asteroid Bennu.

    NASA’s Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing spacecraft flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  36. NASA’s Asteroid-Bound Spacecraft Aces Instrument Check

    September 26, 2016 -

    Its science instruments have been powered on, and NASA’s OSIRIS-REx spacecraft continues on its journey to an asteroid. The spacecraft has passed its initial instrument check with flying colors as it speeds toward a 2018 rendezvous with the asteroid Bennu.

    On Sept. 19, the OCAMS MapCam camera recorded a star field in Taurus, north of the top of the constellation Orion as part of the OSIRIS-REx spacecraft’s post-launch aliveness test. MapCam's first color image is a composite of three of its four color filters, roughly corresponding to blue, green, and red wavelengths. The three images are processed to remove noise, co-registered, and enhanced to emphasize dimmer stars. Color variation in the stars at the pixel level highlights the motivation for calibrating the color response of the camera, which will occur in 6 months. This composite was derived from the following images: 20160919T162228S6220_map_L0b_V001.fits, 20160919T162251S4210_map_L0v_V001.fits, 20160919T162314S3180_map_L0w_V001.fits, 20160919T162337S6670_map_L0x_V001.fits. Credit: NASA/GSFC/University of Arizona

    On Sept. 19, the OCAMS MapCam camera recorded a star field in Taurus, north of the top of the constellation Orion as part of the OSIRIS-REx spacecraft’s post-launch aliveness test. MapCam’s first color image is a composite of three of its four color filters, roughly corresponding to blue, green, and red wavelengths. The three images are processed to remove noise, co-registered, and enhanced to emphasize dimmer stars. Credit: NASA/GSFC/University of Arizona

    Last week NASA’s spacecraft designed to collect a sample of an asteroid ran the first check of its onboard instruments. Starting on Sept. 19, engineers controlling the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft powered on and operated the mission’s five science instruments and one of its navigational instruments. The data received from the checkout indicate that the spacecraft and its instruments are all healthy.

    Instrument testing commenced with the OSIRIS-REx Camera Suite (OCAMS), provided by the University of Arizona. On Monday, OCAMS executed its power-on and test sequence with no issues. The cameras recorded a star field in Taurus north of the constellation Orion along with Orion’s bright red star Betelgeuse. The three OCAMS cameras performed flawlessly during the test.

    On Monday and Wednesday, the OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency, conducted its test sequences, which included a firing of its laser.  All telemetry received from the OLA instrument was as expected.

    On Tuesday, both the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), provided by NASA’s Goddard Space Flight Center, and the OSIRIS-REx Thermal Emissions Spectrometer (OTES), provided by Arizona State University, were separately powered on for tests. Data from both during the checkout showed that the instruments were healthy. The science measurements acquired from OTES exceeded the instrument’s performance requirements.

    On Wednesday, the student experiment from MIT, the Regolith X-ray Imaging Spectrometer (REXIS), executed its functional test with no problems.  And on Thursday, the Touch and Go Camera System (TAGCAMS) navigational camera was powered on and tested, and it operated as expected.  As part of its checkout, TAGCAMS took an image of the spacecraft’s Sample Return Capsule.

    The first light images of star fields from OCAMS’s MapCam and PolyCam illustrate each camera’s specialized function. MapCam’s medium resolution and wider field-of-view will help map the entire surface of Bennu in color. While PolyCam’s field of view is much smaller, it can see much fainter objects at a higher resolution. PolyCam’s ability to act as a telescopic will help the OSIRIS-REx team spot Bennu while it is still a point of light against a field of stars. Images used: 20160919T162205S7220_map_L0pan_V001.fits, 20160919T163144S6440_pol_L0pan_V001.fits Credit: NASA/GSFC/University of Arizona

    The first light images of star fields from OCAMS’s MapCam and PolyCam illustrate each camera’s specialized function. MapCam’s medium resolution and wider field-of-view will help map the entire surface of Bennu in color. While PolyCam’s field of view is much smaller, it can see much fainter objects at a higher resolution. PolyCam’s ability to act as a telescopic will help the OSIRIS-REx team spot Bennu while it is still a point of light against a field of stars. Credit: NASA/GSFC/University of Arizona

    The downlink of the test data continued through Sunday via the spacecraft’s low gain antenna (LGA), which transmitted at 40 kbps to NASA’s Deep Space Network.

    Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. Lockheed Martin Space Systems in Denver built the spacecraft and is providing spacecraft flight operations. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  37. OSIRIS-REx Mission Status Report – Sept. 15

    September 15, 2016 -

    One week post-launch, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft remains healthy and is on track for its two-year journey to the asteroid Bennu.  As of noon EDT Thursday, the spacecraft was approximately 2 million miles (3.2 million kilometers) from Earth, traveling at approximately 12,300 miles per hour (19,800 kilometers per hour) relative to Earth.  All of the spacecraft’s subsystems are operating as expected.

    This is the first image from the OSIRIS-REx star tracker taken on Monday, Sept. 12. Similar to the way early sailors used the stars to navigate, the star tracker on OSIRIS-REx takes images of the stars and compares them to an on-board catalogue, which then tells the spacecraft navigation systems its attitude, or which way it is pointing. Credits: NASA

    This is the first image from the OSIRIS-REx star tracker taken on Monday, Sept. 12. Similar to the way early sailors used the stars to navigate, the star tracker on OSIRIS-REx takes images of the stars and compares them to an on-board catalogue, which then tells the spacecraft navigation systems its attitude, or which way it is pointing.
    Credits: NASA

    The OSIRIS-REx spacecraft is designed to rendezvous with, study, and return a sample of Bennu to Earth. This sample of a primitive asteroid will help scientists understand the formation of our solar system more than 4.5 billion years ago.

    After liftoff at 7:05 p.m. EDT on Sept. 8, the United Launch Alliance Atlas V rocket performed flawlessly and positioned the OSIRIS-REx spacecraft exactly where the mission’s navigation team expected it to be. By 1:30 p.m. EDT on Sept. 9, approximately 18 1/2 hours after launch, the OSIRIS-REx spacecraft had crossed the orbital path of the moon at 240,000 miles (386,500 kilometers). By that evening, the spacecraft transitioned from launch operations into its outbound cruise phase.

    On Sept. 12, OSIRIS-REx took its first image from it star tracker navigational camera, proving the system is functioning properly.  The star tracker takes images of the stars and compares them to an on-board catalog, which then tells the spacecraft navigation systems its attitude, or which way it is pointing.

    Next week, the engineers controlling the OSIRIS-REx spacecraft will conduct checkouts of the science instruments on board the spacecraft.

    Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. Lockheed Martin Space Systems in Denver built the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

  38. PI BLOG: OSIRIS-REx – Day 2 in Space

    September 10, 2016 -

    Our spacecraft continues to operate flawlessly. Kudos to the operations team members who have been tracking and operating the spacecraft since separation! Here are some details on recent status.  After a flawless launch day, day 2 has also progressed as planned […]

  39. NASA’s OSIRIS-REx Speeds Toward Asteroid Rendezvous

    September 8, 2016 -

    NASA’s first asteroid sampling mission launched into space at 7:05 p.m. EDT Thursday from Cape Canaveral Air Force Station in Florida, beginning a journey that could revolutionize our understanding of the early solar system.

    The OSIRIS-REx spacecraft launches aboard a ULA Atlas V 411 rocket from Cape Canaveral Air Force Station, Florida. Credit: United Launch Alliance

    The OSIRIS-REx spacecraft launches aboard a ULA Atlas V 411 rocket from Cape Canaveral Air Force Station, Florida. Credit: United Launch Alliance

    “Today, we celebrate a huge milestone for this remarkable mission, and for this mission team,” said NASA Administrator Charles Bolden. “We’re very excited about what this mission can tell us about the origin of our solar system, and we celebrate the bigger picture of science that is helping us make discoveries and accomplish milestones that might have been science fiction yesterday, but are science facts today.”

    The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft is designed to rendezvous with, study, and return a sample of the asteroid Bennu to Earth. Asteroids like Bennu are remnants from the formation of our solar system more than 4.5 billion years ago. Scientists suspect that asteroids may have been a source of the water and organic molecules for the early Earth and other planetary bodies. An uncontaminated asteroid sample from a known source would enable precise analyses, providing results far beyond what can be achieved by spacecraft-based instruments or by studying meteorites.

    OSIRIS-REx separated from its United Launch Alliance Atlas V rocket at 8:04 p.m. The solar arrays deployed and are now powering the spacecraft.

    “With today’s successful launch, the OSIRIS-REx spacecraft embarks on a journey of exploration to Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “I couldn’t be more proud of the team that made this mission a reality, and I can’t wait to see what we will discover at Bennu.”

    In 2018, OSIRIS-REx will approach Bennu – which is the size of a small mountain – and begin an intricate dance with the asteroid, mapping and studying Bennu in preparation for sample collection. In July 2020, the spacecraft will perform a daring maneuver in which its 11-foot arm will reach out and perform a five-second “high-five” to stir up surface material, collecting at least 2 ounces (60 grams) of small rocks and dust in a sample return container. OSIRIS-REx will return the sample to Earth in September 2023, when it will then be transported to NASA’s Johnson Space Center in Houston for examination.

    The OSIRIS-REx mission will be the first U.S. mission to carry samples from an asteroid back to Earth and the largest sample returned from space since the Apollo era.

    “It’s satisfying to see the culmination of years of effort from this outstanding team,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We were able to deliver OSIRIS-REx on time and under budget to the launch site, and will soon do something that no other NASA spacecraft has done – bring back a sample from an asteroid.”

    Goddard provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The University of Arizona leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver built the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington. Launch and countdown management is the responsibility of NASA’s Kennedy Space Center in Florida.

  40. PI BLOG: The Atlas V 411 AV-067: Our Ride to Space

    August 23, 2016 -

    OSIRIS-REx is scheduled for lift-off from Space Launch Complex-41 (SLC-41) at Cape Canaveral Air Force Station on September 8, 2016 at 7:05 pm EDT. The daily launch window is almost two hours long, extending to 9:00 pm EDT. The entire launch window is 34 days long, extending through October 11, 2016.

  41. NASA Prepares to Launch First U.S. Asteroid Sample Return Mission

    August 17, 2016 -

    NASA is preparing to launch its first mission to return a sample of an asteroid to Earth. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.

    OSIRIS-REx will travel to near-Earth asteroid Bennu on a sample return mission. Credits: NASA

    OSIRIS-REx will travel to near-Earth asteroid Bennu on a sample return mission.
    Credits: NASA

    The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft will travel to the near-Earth asteroid Bennu and bring a sample back to Earth for intensive study. Launch is scheduled for 7:05 p.m. EDT Thursday, Sept. 8 from Cape Canaveral Air Force Station in Florida.

    “This mission exemplifies our nation’s quest to boldly go and study our solar system and beyond to better understand the universe and our place in it,” said Geoff Yoder, acting associate administrator for the agency’s Science Mission Directorate in Washington. “NASA science is the greatest engine of scientific discovery on the planet and OSIRIS-REx embodies our directorate’s goal to innovate, explore, discover, and inspire.”

    The 4,650-pound (2,110-kilogram) fully-fueled spacecraft will launch aboard an Atlas V 411 rocket during a 34-day launch period that begins Sept. 8, and reach its asteroid target in 2018. After a careful survey of Bennu to characterize the asteroid and locate the most promising sample sites, OSIRIS-REx will collect between 2 and 70 ounces (about 60 to 2,000 grams) of surface material with its robotic arm and return the sample to Earth via a detachable capsule in 2023.

    “The launch of OSIRIS-REx is the beginning a seven-year journey to return pristine samples from asteroid Bennu,” said OSIRIS-REx Principal Investigator Dante Lauretta of the University of Arizona, Tucson. “The team has built an amazing spacecraft, and we are well-equipped to investigate Bennu and return with our scientific treasure.”

    OSIRIS-REx has five instruments to explore Bennu:

    OSIRIS-REx Camera Suite (OCAMS) – A system consisting of three cameras provided by the University of Arizona, Tucson, will observe Bennu and provide global imaging, sample site imaging, and will witness the sampling event.

    OSIRIS-REx Laser Altimeter (OLA) – A scanning LIDAR (Light Detection and Ranging) contributed by the Canadian Space Agency will be used to measure the distance between the spacecraft and Bennu’s surface, and will map the shape of the asteroid.

    OSIRIS-REx Thermal Emission Spectrometer (OTES) – An instrument provided by Arizona State University in Tempe that will investigate mineral abundances and provide temperature information with observations in the thermal infrared spectrum.

    OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) – An instrument provided by NASA’s Goddard Space Flight Center in Greenbelt, Maryland and designed to measure visible and infrared light from Bennu to identify mineral and organic material.

    Regolith X-ray Imaging Spectrometer (REXIS) – A student experiment provided by the Massachusetts Institute of Technology (MIT) and Harvard University in Cambridge, which will observe the X-ray spectrum to identify chemical elements on Bennu’s surface and their abundances.

    Additionally, the spacecraft has two systems that will enable the sample collection and return:

    Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – An articulated robotic arm with a sampler head, provided by Lockheed Martin Space Systems in Denver, to collect a sample of Bennu’s surface.

    OSIRIS-REx Sample Return Capsule (SRC) – A capsule with a heat shield and parachutes in which the spacecraft will return the asteroid sample to Earth, provided by Lockheed Martin.

    “Our upcoming launch is the culmination of a tremendous amount of effort from an extremely dedicated team of scientists, engineers, technicians, finance and support personnel,” said OSIRIS-REx Project Manager Mike Donnelly at Goddard. “I’m incredibly proud of this team and look forward to launching the mission’s journey to Bennu and back.”

    Goddard provides overall mission management, systems engineering, and safety and mission assurance for OSIRIS-REx. Lockheed Martin Space Systems built the spacecraft. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

  42. PI BLOG: 39 Days to Launch – What’s Left to Get Done?

    July 31, 2016 -

    With only 39 days to go until we launch OSIRIS-REx our schedule is packed with activities. Here is a quick rundown of what the team has left to do to get ready to blast this asteroid-sampling robot into space.

  43. NASA’s OSIRIS-REx Mission Will Have a Map for That

    May 25, 2016 -

    On Sept. 8, NASA’s OSIRIS-REx spacecraft is scheduled to launch for terra incognita: the unknown surface of the near-Earth asteroid Bennu. Like expeditions of old, OSIRIS-REx’s mission includes mapping the exotic terrain it explores.

    Bennu is part of the debris left over from the formation of the solar system and is pristine enough to hold clues to that very early history. OSIRIS-REx – which stands for Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer – will study Bennu in detail and collect a sample to send to Earth for in-depth analysis. The mission also will investigate how pressure from sunlight influences the path of this traveling asteroid.

    “I like to say the first thing any explorer does upon reaching a new land is to start making maps,” said Ed Beshore, deputy principal investigator of OSIRIS-REx at the University of Arizona in Tucson.

    The mapping of the near-Earth asteroid Bennu is one of the science goals of NASA’s OSIRIS-REx mission, and an integral part of spacecraft operations. The spacecraft will spend a year surveying Bennu before collecting a sample that will be returned to Earth for analysis. Credits: NASA/Goddard/University of Arizona

    The mapping of the near-Earth asteroid Bennu is one of the science goals of NASA’s OSIRIS-REx mission, and an integral part of spacecraft operations. The spacecraft will spend a year surveying Bennu before collecting a sample that will be returned to Earth for analysis.
    Credits: NASA/Goddard/University of Arizona

    For OSIRIS-REx, mapping is mission-critical. It’s one of the primary science goals and an integral part of spacecraft operations. The spacecraft will spend a year flying in close proximity to Bennu – its five instruments imaging the asteroid, documenting its lumpy shape, and surveying its chemical and physical properties.

     

    This information will be used to produce four top-level maps for identifying the site where sample will be collected. These maps will indicate which sites are scientifically most valuable, where the spacecraft can touch the asteroid safely, where navigation can deliver the spacecraft, and where there is enough loose rock that can be collected.

    About a dozen potential sampling sites will be chosen to start. Once this list has been winnowed down, reconnaissance maps will provide detailed views of the few remaining candidates. Later, after the sampling is done, the team will refine some maps to provide context for laboratory analysis of the material and to aid future studies of asteroids.

    “Each map will pull together different kinds of data to answer an independent question,” said Lucy Lim, OSIRIS-REx assistant project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    One top-level map will deal with the safety of the spacecraft. The team has to make sure OSIRIS-REx won’t encounter hazards as it approaches Bennu and executes its touch-and-go – or TAG – maneuver. A mechanical arm that functions like a pogo stick will be extended from the spacecraft. The spacecraft will slowly approach the asteroid until the sample head at the end of the arm “kisses” the surface. Then, OSIRIS-REx will move away from the asteroid.

    The target area for TAG will be a circle that measures 164 feet (50 meters) across.

    “We have to be able to say with a high degree of confidence that the spacecraft will be safe if it touches the surface anywhere within that circle,” said David Lorenz, OSIRIS-REx TAG lead at Goddard.

    To determine that, the team will look at the tilt of the landscape, temperature readings, and whether plumes of material are coming off the asteroid. Another consideration will be the amount of light reflected by the surface. That’s important because OSIRIS-REx will bounce laser signals off the surface. If an area is too dark, there won’t be enough return signal; an area that’s too bright will blind the detector.

    Hazards such as large boulders and steep cliffs will be identified at a different stage.

    Another top-level map will address the ability to deliver OSIRIS-REx to its target. This is primarily a navigation question: Can the spacecraft be brought to a target site at the correct speed? (Both vertical speed and sideways speed matter.) If not, the spacecraft will be in danger of crashing or tipping over in a so-called stubbed-toe scenario.

    Bennu’s mass makes navigating a particular challenge. The asteroid will be one of the smallest objects ever visited by a planetary spacecraft. Bennu has very little gravity – so little that pressure from sunlight on OSIRIS-REx will almost equal the force of Bennu’s gravity. To stay in orbit, the spacecraft will have to remain within a mile and a half (about 2.4 kilometers) of Bennu. Any farther than that, and the pressure from sunlight will push it away from the asteroid.

    “The bottom line is that we’re paying a lot more attention to modeling very small accelerations, such as those exerted by solar radiation pressure, than previous missions have had to do,” said Michael Moreau, OSIRIS-REx flight dynamics system manager at Goddard.

    The third of these maps will determine where the right kind of surface material is located. The sample head, which looks like a big automotive air filter, can take in dirt, dust and bits of gravel measuring less than three-fourths of an inch (2 centimeters). At least 2 ounces (60 grams) of material needs to be collected, but the sample head can hold up to 4.4 pounds (2 kilograms).

    “Our goal is to maximize the amount of sample for OSIRIS-REx,” said Kevin Walsh, an OSIRIS-REx co-investigator at the Southwest Research Institute in Boulder, Colorado. “We have tested the sample head in the lab and know how it performs, and we will hunt for the right sort of environment on Bennu.”

    To find that, the team will look at images, tilt measurements and thermal information, which reveals how the material on the surface stores and releases heat. Coarser, rockier grains will absorb more heat from the sun and give it off slowly during the asteroid’s night. Fine-grained particles will lose heat very quickly once they are out of the sunlight.

    The fourth top-level map will evaluate the scientific value of the surface on Bennu. From remote observations, the team assumes that Bennu should contain water and organic – or carbon-rich – material, but they don’t know yet how this material is distributed across the surface.

    “Some of the most interesting sites will be those that offer fresh material – perhaps exposed by an impact, a crack or plume activity like comets have – and those with diverse material,” said Keiko Nakamura-Messenger, OSIRIS-REx sample site scientist and the deputy lead for curation at NASA’s Johnson Space Center in Houston. “We also believe the coldest place has higher science value, because that is where organics are likely to be better preserved.”

    To figure this out, the team will look at geological features, mineralogy, chemical composition and temperature.

    All of these maps will be built on a 3-D shape model of Bennu. The team is already using a preliminary shape model, produced from radar observations of the asteroid. But a new shape model with much higher resolution will be made once OSIRIS-REx surveys Bennu.

    “The shape model is the framework – the one piece every map needs to have,” said Eric Palmer, an OSIRIS-REx collaborator at the Planetary Science Institute in Tucson. “It also provides a way of correcting scientific observations so that you can make apples-to-apples comparisons.”

    The team has two ways of deriving the detailed shape of Bennu. One is to make precise measurements of the round-trip distance from the spacecraft to the asteroid using the on-board laser altimeter. The other is the so-called shape-by-shading technique – or stereophotoclinometry – which deduces the 3-D lay of the land from multiple images taken from different angles under a range of lighting conditions.

    Beshore pointed out one more reason to put all this effort into mapping. “These maps of Bennu are going to be beautiful,” he said.

    NASA Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission’s principal investigator at the University of Arizona, Tucson. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

    Launch management is the responsibility of NASA’s Launch Services Program at the Kennedy Space Center in Florida.

  44. PI BLOG: The Journey to Kennedy Space Center

    May 24, 2016 -

    The OSIRIS-REx project continues to progress seamlessly through the Assembly, Test, and Launch Operations (ATLO) phase. We are now done with the AT portion of this phase and have started LO. The test phase ended with the completion of the last major environmental test: the thermal vacuum test. With the test program complete, the team made the transition to the launch site at Kennedy Space Center […]

  45. NASA Begins Launch Preparations for the First U.S. Asteroid Sampling Mission

    May 23, 2016 -

    NASA’s first spacecraft designed to return a piece of an asteroid to Earth arrived Friday, May 20, at the agency’s Kennedy Space Center in Florida, and has begun final preparations in advance of its September launch.

    The OSIRIS-REx spacecraft is unloaded from a US Air Force -17 at NASA's Kennedy Space Center Shuttle Landing Facility. Credit: University of Arizona/Erin Morton

    The OSIRIS-REx spacecraft is unloaded from a US Air Force C-17 at NASA’s Kennedy Space Center Shuttle Landing Facility. Credit: University of Arizona/Erin Morton

    The Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will undergo final testing and fueling prior to being moved to its launch pad. The mission has a 34-day launch period beginning on Sept. 8.

    After launch, the OSIRIS-REx spacecraft will travel to the near-Earth asteroid Bennu and retrieve at least 60 grams (2.1 ounces) of pristine surface material and return it to Earth for study. Scientists expect that Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.

    “I’m extremely proud of our team and excited to be shipping the OSIRIS-REx spacecraft to Kennedy Space Center, said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We still have a few major milestones to go, but I’m confident that we’ll get them done and be ready to launch on time and begin our mission to Bennu.”

    Over the weekend, the team transferred the spacecraft from the shipping container into a cleanroom and performed post-ship inspections to confirm that OSIRIS-REx arrived in good condition. The spacecraft is ready to begin its final round of testing and pre-launch checks, which are scheduled to commence later today when it will be installed onto a spin balance fixture. Further checks prior to launch will include software tests, instrument and power functional tests, spacecraft self-tests and deployments of the spacecraft’s solar panels.

    The spacecraft was transported from Buckley Air Force Base in Aurora, Colorado, on Friday aboard a U.S. Air Force C-17 cargo plane. Lockheed Martin Space Systems designed and built the spacecraft in its Littleton, Colorado, facility.“Delivering OSIRIS-REx to the launch site marks an important milestone, one that’s been many years in the making,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems Company. “The spacecraft has undergone a rigorous environmental test

    After arriving at NASA's Kennedy Space Center, the OSIRIS-REx spacecraft sits on a launch vehicle adapter ring in the Payload Hazardous Servicing Facility. Credit: University of Arizona/Erin Morton

    After arriving at NASA’s Kennedy Space Center, the OSIRIS-REx spacecraft sits on a launch vehicle adapter ring in the Payload Hazardous Servicing Facility. Credit: University of Arizona/Erin Morton

    program in Denver, but we still have plenty of work ahead of us. Many on our team have temporarily moved to Florida so they can continue final processing and have the spacecraft ready for the Sept. 8 launch date.”

    After launch, the OSIRIS-REx spacecraft has an approximately two-year cruise to reach Bennu in 2018. Upon arrival, OSIRIS-REx will spend two years conducting surface mapping and sample site reconnaissance operations before performing the sampling maneuver in 2020. OSIRIS-REx will then deliver the pristine sample of Bennu back to Earth in 2023.

    “This team has done a phenomenal job of assembling and testing the spacecraft,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “As we begin the final preparations for launch, I am confident that this spacecraft is ready to perform its science operations at Bennu.  And I can’t wait to fly it.”

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx.  Dante Lauretta is the mission’s principal investigator at the University of Arizona.  Lockheed Martin Space Systems in Denver built the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages NASA’s New Frontiers Program for the agency’s Science Mission Directorate in Washington. Launch and countdown management is the responsibility of NASA’s John F. Kennedy Space Center in Florida.

  46. PI BLOG: Engineering an Impact on the New Frontier

    April 4, 2016 -

    It was a chilly December morning; I was 10 years old and sitting on the cold, hard floor of my elementary school library … too enthralled and focused on a 20-inch television screen to realize how uncomfortable I was.  […]

  47. PI BLOG: OSIRIS-REx Passes EMI/EMC Testing

    February 24, 2016 -

    The OSIRIS-REx spacecraft has completed the Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) system level test. This test has three objectives. The first objective is to test for Radiated Emissions, which are the release of electromagnetic energy from the spacecraft […]

  48. NASA Invites Public to Send Artwork to an Asteroid

    February 19, 2016 -

    NASA is calling all space enthusiasts to send their artistic endeavors on a journey aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft. This will be the first U.S. mission to collect a sample of an asteroid and return it to Earth for study.

    OSIRIS-REx is scheduled to launch in September and travel to the asteroid Bennu. The #WeTheExplorers campaign invites the public to take part in this mission by expressing, through art, how the mission’s spirit of exploration is reflected in their own lives. Submitted works of art will be saved on a chip on the spacecraft. The spacecraft already carries a chip with more than 442,000 names submitted through the 2014 “Messages to Bennu” campaign.WeTheExplorers NASAgov OREx

    “The development of the spacecraft and instruments has been a hugely creative process, where ultimately the canvas is the machined metal and composites preparing for launch in September,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is fitting that this endeavor can inspire the public to express their creativity to be carried by OSIRIS-REx into space.”

    A submission may take the form of a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression that reflects what it means to be an explorer. Submissions will be accepted via Twitter and Instagram until March 20. For details on how to include your submission on the mission to Bennu, go to:

    http://www.asteroidmission.org/WeTheExplorers

    “Space exploration is an inherently creative activity,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We are inviting the world to join us on this great adventure by placing their art work on the OSIRIS-REx spacecraft, where it will stay in space for millennia.”

    The spacecraft will voyage to the near-Earth asteroid Bennu to collect a sample of at least 60 grams (2.1 ounces) and return it to Earth for study. Scientists expect Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.

    Goddard provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The University of Arizona, Tucson leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program.  NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

     

  49. PI BLOG: How REXIS Made It on the Spacecraft

    January 21, 2016 -

    OSIRIS-REx has achieved many major milestones over the past month. Of the more signification accomplishments is the installation of the Regolith X-ray Imaging Spectrometer on the spacecraft. The instrument team has successfully installed the REXIS Spectrometer and Solar X-ray Monitor on the spacecraft.  The Initial Power-on and functional tests were successfully completed on December 19.  However, there is more to the story of how REXIS made it on to the spacecraft.

  50. Student-Built Experiment Integrated onto NASA’s OSIRIS-REx Mission

    January 7, 2016 -
    MIT graduate students Pronoy Biswas (left) and Mark Chodas prepare the Regolith X-Ray Imaging Spectrometer (REXIS) instrument for flight. Credit: William Litant/MIT

    MIT graduate students Pronoy Biswas (left) and Mark Chodas prepare the Regolith X-Ray Imaging Spectrometer (REXIS) instrument for flight. Credit: William Litant/MIT

    A student-built experiment aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission has been integrated onto the spacecraft.

    The Regolith X-ray Imaging Spectrometer (REXIS) will determine elemental abundances on the surface of asteroid Bennu, complementing the mineral and chemical mapping capabilities provided by two other instruments on the spacecraft.

    “The students worked incredibly hard to get to this point,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is quite an accomplishment to develop a flight instrument and have it integrated to a spacecraft that’s headed to an asteroid.”

    REXIS will observe the solar X-rays and their interaction with the asteroid’s surface material, or regolith. The surface responds to this incoming energy by glowing faintly, or fluorescing, by emitting X-rays. These X-rays have an energy that is uniquely characteristic of the elements. REXIS is a telescope that images this X-ray fluorescence, allowing the production of maps of the different elements present on Bennu’s surface.

    REXIS brings together students and faculty from Massachusetts Institute of Technology (MIT) and Harvard University, both in Cambridge. After a competitive process REXIS was selected as a student collaboration experiment as part of OSIRIS-REx.

    The instrument will involve more than 100 students throughout the mission. Students at Harvard and MIT will perform data analysis as part of their coursework.

    “The REXIS instrument has already achieved its primary objective – to train the next generation of scientists and engineers,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “This team should be proud of all they have accomplished. I look forward to seeing the REXIS data from Bennu and using it to learn more about the chemistry of the asteroid surface.”

    OSIRIS-REx will be the first U.S. mission to sample an asteroid. After launch in September 2016, the OSIRIS-REx spacecraft will travel to the near-Earth asteroid Bennu and retrieve at least 60 grams (2.1 ounces) of surface material and return it to Earth for study. Scientists expect that Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth. OSIRIS-REx’s investigation will also inform future efforts to develop a mission to mitigate an asteroid impact on Earth, should one be required.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx.  Dante Lauretta is the mission’s principal investigator at the University of Arizona. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

Subscribe for all mission updates.

  • This field is for validation purposes and should be left unchanged.